ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Solución de Ecuaciones no Lineales por diferentes métodos

IAN ULISES TRUJILLO BARRIENTOSPráctica o problema3 de Septiembre de 2023

5.237 Palabras (21 Páginas)120 Visitas

Página 1 de 21

[pic 1]

CIENCIAS BASICAS E INGENIERIA

METODOS NUMERICOS EN INGENIERIA

PRÁCTICA 2. Solución de Ecuaciones no Lineales por diferentes métodos.

GRUPO: CSI03

PROFESOR: ALEJANDRO CRUZ SANDOVAL

INTEGRANTES:        MATRICULA:

TRUJILLO BARRIENTOS IAN ULISES

2182001067

CASTILLO PEREZ MANUEL OMAR

2213030429

GRANADOS GONZALEZ JUAN CARLOS

2203030275

GARCIA HERNANDEZ MARIA FERNANDA

2213031720

INTRODUCCION

En esta práctica se busca conocer los 5 métodos para la solución de ecuaciones no lineales, los métodos que se mencionan son: método de bisección, método de falsa posición, método de punto fijo, método de Newton- Raphson y método de la secante, los cuales dos son métodos de intervalo cerrado y los demás de intervalo abierto.

Por otra parte, el método de bisección y de falsa posición son métodos muy parecidos, la diferencia está en la formula del método de falsa posición y en que el método de bisección se suman los números del intervalo y se divide entre dos, algo que debemos tomar en cuenta es que deben cumplir con el teorema de Bolzano.

El teorema de Bolzano nos dice que, al evaluar la función en cada una de las coordenadas, el producto debe ser menor que cero, por lo contrario, el teorema no cumple y no se puede utilizar estos métodos.

Cabe recalcar que los 5 métodos solo funcionan si hay un cambio de signo, de lo contrario los métodos son inútiles.

EJERCICIOS

En los siguientes problemas utilice un 𝜀=0.001 y 5 dígitos después del punto decimal, también grafique para encontrar una raíz de las siguientes funciones, utilice los métodos vistos en clase y proporcione sus propias conclusiones de los métodos. Hacer obligatoriamente los ejercicios marcados con la flecha.

1.-𝑓(𝑥) = 𝑥 3

[pic 2][pic 3]

1) BISECCION:

[−1,1]

𝑓(−1) = (−1)3 = 1

𝑓(1) = (1)3 = 1

𝑓(−1) ∗ 𝑓(1) < 0

PUNTO MEDIO:

−1 + 1

𝑥𝑟1 =                = 0 2[pic 4]

[−1,0]

[−1,1]

𝑓(−1) = (−1)3 = 1

𝑓(0) = (0)3 = 0

𝑓(0) = (0)3 = 0

𝑓(1) = (1)3 = 1

𝑓(−1) ∗ 𝑓(0) = 0

𝑓(0) ∗ 𝑓(1) = 0

FALSA POSICIÓN:

− f(xa ) ⋅ (xb − xa )

𝑥𝑟1 =


[pic 5]

f(xb ) − f(xa )

𝑥𝑟1 = −1 −


(−1)3 ⋅ (−1 − (−1))

(1)3 − (−1)3        = 0[pic 6]

Por lo tanto, la raíz es = 0

PUNTO FIJO:[pic 7]

A

b

c

𝑥3 = 0

𝑔(𝑥) = 0

𝑔(𝑥) = 0

𝑥 =  3√0

𝑔(𝑥) = 0

𝑔(0) = 0

𝑥 = 0

|0| < 1

Por lo tanto, la raíz es = 0

NEWTON RAPSHON:

f(xi)

𝑥𝑖 = 𝑥𝑖


[pic 8]

𝑓′(𝑥𝑖)

𝑥0 = −1

𝑓(𝑥) = 3𝑥2

𝑥𝑖 = 𝑥𝑖 − 𝑥3[pic 9]

3𝑥2


(−1)3

𝑥1 = (−1) − 3(−1)2 = −0.6666[pic 10]

(−1)3

𝑥2 = (−1) − 3(−1)2 = −0.4444[pic 11]

(−1)3

𝑥3 = (−1) − 3(−1)2 = −0.2962[pic 12]

(−1)3

𝑥4 = (−1) − 3(−1)2 = −0.1974[pic 13]

(−1)3

𝑥5 = (−1) − 3(−1)2 = −0.1316[pic 14]

(−1)3

𝑥6 = (−1) − 3(−1)2 = −0.0877[pic 15]

(−1)3

𝑥7 = (−1) − 3(−1)2 = −0.0584[pic 16]

(−1)3

𝑥8 = (−1) − 3(−1)2 = −0.0398[pic 17]

(−1)3

𝑥9 = (−1) − 3(−1)2 = −0.0259[pic 18]

(−1)3

𝑥10 = (−1) − 3(−1)2 = −0.0172[pic 19]

(−1)3

𝑥11 = (−1) − 3(−1)2 = −0.0114[pic 20]

(−1)3

𝑥12 = (−1) − 3(−1)2 = −0.0076[pic 21]

(−1)3

𝑥13 = (−1) − 3(−1)2 = −0.0050[pic 22]

(−1)3

𝑥14 = (−1) − 3(−1)2 = −0.0033[pic 23]

(−1)3

𝑥15 = (−1) − 3(−1)2 = −0.0022[pic 24]

(−1)3

𝑥16 = (−1) − 3(−1)2 = −0.0014[pic 25]

(−1)3

𝑥17 = (−1) − 3(−1)2 = −0.00099[pic 26]

(−1)3

𝑥18 = (−1) − 3(−1)2 = −0.0006[pic 27]

𝑥19 = (−1) (−1)3[pic 28]

3(−1)2


= −0.0004

(−1)3

𝑥20 = (−1) − 3(−1)2 = −0.0002[pic 29]

(−1)3

𝑥21 = (−1) − 3(−1)2 = −0.0001[pic 30]

(−1)3

𝑥22 = (−1) − 3(−1)2 = −0.0000[pic 31]

Por lo tanto la raiz es =0 METODO DE LA SECANTE:

𝑥0 = −2

𝑥1 = 0

f(xii)(xi − xi − 1)

𝑥𝑖 + 1 = 𝑥𝑖 − 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − 1)[pic 32]

(0)3(−2 − (−2))

𝑥𝑖 + 1 = 0 −


[pic 33]

(0)3 − (−2)3

Por lo tanto, la raíz es =0

𝒙 + 𝟏

𝟒. −𝒇(𝒙) =


[pic 34]

𝒙 − 𝟐


, 𝒆𝒏[−𝟐, 𝟎]

[pic 35]

  1. BISECCION: [-2,0]

𝑓(−2) =


−2 + 1

[pic 36]

−2 − 2


= 0.25

𝑓(0) =


0 + 1

[pic 37]

0 − 2


= 0.5

𝑓(−2) ∗ 𝑓(0) < 0

PUNTO MEDIO:

−2 + 0

𝑋𝑟1 =        2        = −1[pic 38]

[-2,-1]

𝑓(−2) = 0.25

𝑓(−1) = 0

𝑓(−2) ∗ 𝑓(−1) = 0

[-1,0]

𝑓(−1) = 0

𝑓(0) = −0.25

𝑓(−1) ∗ 𝑓(0) = 0

Por lo tanto, la raíz es =-1

FALSA POSICÓN:

𝑓(𝑥𝑎)(𝑥𝑏 − 𝑥𝑎)

𝑥𝑟 = 𝑥𝑎 −


[pic 39]

𝑓(𝑥𝑏) − 𝑓(𝑥𝑎)

(0.25)(0 − (−2))

𝑥𝑟1 = −2 −[pic 40]

...

Descargar como (para miembros actualizados) txt (38 Kb) pdf (516 Kb) docx (1 Mb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com