Trigonometria
Enviado por gilsons • 12 de Diciembre de 2013 • 1.449 Palabras (6 Páginas) • 219 Visitas
Trigonometría
Ángulos y sus medidas
Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice.
El ángulo es positivo si se desplaza en sentido contrario al movimiento de las agujas del reloj y negativo en caso contrario.
Para medir ángulos se utilizan las siguientes unidades:
1Grado sexagesimal (°)
Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una de sus partes es un ángulo de un grado (1°) sexagesimal.
Un grado tiene 60 minutos (') y un minuto tiene 60 segundos ('').
2 Radián (rad)
Es la medida de un ángulo cuyo arco mide un radio.
2 rad = 360°
rad = 180°
30º rad
/3 rad º
Las funciones trigonométricas
Artículo principal: Función trigonométrica
La trigonometría es una rama importante de las matemáticas dedicada al estudio de la relación entre los lados y ángulos de un triángulo rectángulo y una circunferencia. Con este propósito se definieron una serie de funciones, las que han sobrepasado su fin original para convertirse en elementos matemáticos estudiados en sí mismos y con aplicaciones en los campos más diversos.
Razones trigonométricas
El triángulo ABC es un triángulo rectángulo en C; lo usaremos para definir las razones seno, coseno y tangente, del ángulo , correspondiente al vértice A, situado en el centro de la circunferencia.
• El seno (abreviado como sen, o sin por llamarse "sĭnus" en latín) es la razón entre el cateto opuesto sobre la hipotenusa.
• El coseno (abreviado como cos) es la razón entre el cateto adyacente sobre la hipotenusa,
• La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto sobre el cateto adyacente,
Signo de la medidas de los ángulos
Razones trigonométricas. Dada una circunferencia de radio r, si tomamos un arco AP, donde A es un punto del semieje positivo de las x y P(x,y), el punto del extremo, se definen las razones trigonométricas del ángulo en la forma:
• Seno sen = ordenada / radio = y / r
• Coseno cos = abscisa / radio = x / r
• Tangente tg seno / coseno = ordenada / abscisa = y / x
• Cotangente cotg = coseno / seno = abscisa / ordenada = x / y
• Secante sec 1 / coseno = 1 / (x / r) = r / x
• Cosecante cosec 1 / seno = 1 / (y / r) = r / y
Signo de las razones. En cada cuadrante, dependiendo del signo de las abscisas y ordenadas, las razones presentan los siguientes signos:
Ángulos notables.
• 30º Para determinar sus razones tenemos en cuenta que se forma un triángulo equilátero:
sen 30º = y/r= (r/2) / r = 1/2
cos 30º = x/r= 3½ / 2
r2=x2+(r/2)2=x2+r2/4 x=(3r2/4)½=r3½/2
tg 30 º=(1/2)/(3½/2)= 3½ / 3
• 60º Formamos el triángulo equilátero de la figura:
sen 60º= y/r= (r 3½ / 2)/r= 3½ / 2
r2 = y2 + ( r/2)2
y = ( r2-r2/4)½ = ( 3 r2 / 4 )½ = r 3½ / 2
cos 60º= (r/2)/r = 1 / 2
tg 60º = (3½ / 2)/(1/2) = 3½
• 45º La x y la y son iguales, por lo que se forma un triángulo isósceles:
sen 45º = y/r = 2½ / 2
r2 = x2 + y2 = 2 y2
y=(r2/2)½=r(2½)/2
cos 45º= x/r = y = 2½ / 2
tg 45º = sen 45º / cos 45º = 1
TEOREMAS DE ADICIÓN
1.-
...