Tarea N°1 prueba de raiz unitaria
Enviado por nilsonmamani1995 • 21 de Septiembre de 2020 • Informe • 1.486 Palabras (6 Páginas) • 112 Visitas
[Workspace loaded from D:/eco3-2020/.RData]
> # Puno, 21-09-20
> # Taller de econometria III
> # Tema: Prueba de raíz unitaria
> #
> #
> # Aplicacion en R studio.
> #
> #
> rm (list = ls ())
> library(readxl)
> library(tseries)
Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
‘tseries’ version: 0.10-47
‘tseries’ is a package for time series analysis and computational finance.
See ‘library(help="tseries")’ for details.
> library(tseries)
> library(urca)
> getwd() # muestra el directorio actual
[1] "D:/eco3-2020"
> setwd("d:/eco3-2020")
> datosxlsx<- read_xlsx("d:/eco3-2020/pbiganual.xlsx")
> attach(datosxlsx)
> names(datosxlsx)
[1] "años" "cpr" "ibi" "gpu" "exp" "imp" "pbi"
> # Transformacion de variables
> lncpr<-log(cpr)
> # definiendo variables de series de tiempo
> lncprts=ts(lncpr, start = c(1950,1), end=c(2019,1), freq=1)
> #
> # Prueba de raíz unitaria de Dickey Fuller
> #
> dfs<- adf.test(log(lncprts),k=0) # prueba de RU de DF simple
> dfs
Augmented Dickey-Fuller Test
data: log(lncprts)
Dickey-Fuller = -2.0125, Lag order = 0, p-value = 0.5701
alternative hypothesis: stationary
> dfa<-adf.test(log(lncprts)) # prueba de RU de DFA
> # alternativamente puede ejecutar con las instrucciones
> dfa
Augmented Dickey-Fuller Test
data: log(lncprts)
Dickey-Fuller = -1.897, Lag order = 4, p-value = 0.6171
alternative hypothesis: stationary
> lc.df <- ur.df(y= lncprts, type='drift',lags=4, selectlags=c("AIC"))
> summary(lc.df)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.126111 -0.023551 0.005713 0.027482 0.112762
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.077624 0.114673 0.677 0.50102
z.lag.1 -0.004414 0.009849 -0.448 0.65557
z.diff.lag1 0.583373 0.119635 4.876 8.08e-06 ***
z.diff.lag2 -0.348732 0.119690 -2.914 0.00499 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04404 on 61 degrees of freedom
Multiple R-squared: 0.289, Adjusted R-squared: 0.2541
F-statistic: 8.267 on 3 and 61 DF, p-value: 0.0001066
Value of test-statistic is: -0.4482 7.1155
Critical values for test statistics:
1pct 5pct 10pct
tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
> lc.df <- ur.df(y= lncprts, type='none',lags=4, selectlags=c("AIC"))
> summary(lc.df)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression none
Call:
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.127027 -0.024450 0.006763 0.027314 0.113297
Coefficients:
Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.0022396 0.0006008 3.727 0.000421 ***
z.diff.lag1 0.5843514 0.1191027 4.906 7.05e-06 ***
z.diff.lag2 -0.3512115 0.1191099 -2.949 0.004496 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04384 on 62 degrees of freedom
Multiple R-squared: 0.5088, Adjusted R-squared: 0.485
F-statistic: 21.41 on 3 and 62 DF, p-value: 1.236e-09
Value of test-statistic is: 3.7275
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.6 -1.95 -1.61
> # Prueba de Phillips - Perron
> pp.test(log(lncprts)) # Prueba de RU de Phillips Perron
Phillips-Perron Unit Root Test
data: log(lncprts)
Dickey-Fuller Z(alpha) = -7.0337, Truncation lag parameter = 3, p-value = 0.7014
alternative hypothesis: stationary
> lc.df <- ur.df(y= lncprts, type='trend',lags=4, selectlags=c("AIC"))
> summary(lc.df)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression trend
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.12226 -0.02436 0.01097 0.02514 0.11185
Coefficients:
Estimate Std. Error t value Pr(>|t|)
...