Exposicion Calculo Diferencial
Enviado por moxop • 27 de Septiembre de 2013 • 1.399 Palabras (6 Páginas) • 439 Visitas
Límite finito
Definición de Límite finito de una función
limx->a f(x)=b <=> para todo ε>0 existe δ>0 / para todo x, 0 < |x-a| < δ |f(x) - b| < ε.
Se dice que la función f(x) tiene límite b, cuando x tiende a a, si dado ε positivo arbitrario y tan pequeño como se quiera, existe un δ tal que para todo x perteneciente al entorno reducido de a de radio δ, la función pertenece al entorno de b de radio ε. Dicho de otro modo, para cualquier número positivo ε, por pequeño que sea, podemos encontrar un δ tal que para todos los x dentro del entorno reducido de a de radio δ se cumple que f(x) está dentro del entorno de b de radio ε.
limx->af(x)=b significa que por más pequeño que sea el entorno considerado alrededor de b, va a ser posible encontrar un entorno de a, para cuyos valores x (x ≠ a), la función f da como resultado valores que están dentro del entorno de b considerado.
En otras palabras, la función f(x) tiene límite b, cuando x tiende a a, si el valor de la función f(x) se hace arbitrariamente próximo al valor b cuando x se aproxima al valor a.
Definición de Intervalo cerrado
Un segmento en el eje numérico con extremos a y b, con a < b, se denomina intervalo. Si los puntos extremos, a y b, están incluidos en el intervalo, se dice que el intervalo es cerrado, y se denota por [a,b].
[a,b] = { x perteneciente a R / a <= x <= b }
El intervalo cerrado [a,b] consiste de los puntos x para los cuales a <= x <= b.
Definición de Intervalo abierto
Si los puntos extremos se excluyen, el intervalo se llama abierto, y se denota por (a,b).
(a,b) = { x perteneciente a R / a < x < b }
El intervalo abierto (a,b) consiste de aquellos puntos x para los cuales a < x < b.
Definición de Límites laterales
Límite de f(x) en el punto a por la derecha :
limx->a+f(x)=b <=> para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a,a + δ) |f(x) - b| < ε.
Límite de f(x) en el punto a por la izquierda :
limx->a-f(x)=b <=> para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a - δ,a) |f(x) - b| < ε.
Nota: x->a+ indica que x tiende a a por la derecha, es decir que x pertenece al entorno (a,a + δ).
x->a- indica que x tiende a a por la izquierda, es decir que x pertenece al entorno (a - δ,a).
A veces las funciones son discontinuas o no están definidas en un punto a, pero son continuas a uno y otro lado. En estos casos, el límite por la izquierda puede ser distinto del límite por la derecha.
Ejemplo
f(x) = x2 si x <= 2
-2x + 1 si x > 2
limx->2-f(x)=4
limx->2+f(x)=-3
No existe limx->2f(x)
Teorema
Existe el límite finito de una función <=> los límites laterales son iguales.
H) limx->af(x)=b
T) limx->a+f(x) = limx->a-f(x) = b
Demostración:
Directo:
limx->af(x)=b => (por def. de límite) para todo ε > 0 existe δ > 0 / para todo x perteneciente al E*a,δ f(x) pertenece al Eb,ε.
=> para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a - δ,a) f(x) pertenece al Eb,ε => (por def. de límites laterales) limx->a-f(x)=b.
y para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a,a + δ) f(x) pertenece al Eb,ε => (por def. de límites laterales) limx->a+f(x)=b.
Recíproco:
limx->a+f(x)=b => para todo ε > 0 existe δ1 > 0 / para todo x perteneciente a (a,a + δ1) f(x) pertenece al Eb,ε.
limx->a-f(x)=b => para todo ε > 0 existe δ2 > 0 / para todo x perteneciente a (a - δ2,a) f(x) pertenece al Eb,ε.
Sea δ = min {δ1,δ2}
Para todo x perteneciente a E*a,δ f(x) pertenece al Eb,ε. =>limx->af(x) = b.
Ejemplo: en la función del
...