ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Logica De Primer Orden


Enviado por   •  29 de Agosto de 2012  •  4.478 Palabras (18 Páginas)  •  990 Visitas

Página 1 de 18

Lógica de primer orden

La lógica de primer orden, también llamada lógica de predicados o cálculo de predicados, es un sistema formal diseñado para estudiar la inferencia en los lenguajes de primer orden.1 Los lenguajes de primer orden son, a su vez, lenguajes formales con cuantificadores que alcanzan sólo a variables de individuo, y con predicados y funciones cuyos argumentos son sólo constantes o variables de individuo.2

La lógica de primer orden tiene el poder expresivo suficiente para definir a prácticamente todas las matemáticas.

Predicados

Un predicado es una expresión lingüística que puede conectarse con una o varias otras expresiones para formar una oración.3 Por ejemplo, en la oración «Marte es un planeta», la expresión «es un planeta» es un predicado que se conecta con la expresión «Marte» para formar una oración. Y en la oración «Júpiter es más grande que Marte», la expresión «es más grande que» es un predicado que se conecta con dos expresiones, «Júpiter» y «Marte», para formar una oración.

Cuando un predicado se conecta con una expresión, se dice que expresa una propiedad (como la propiedad de ser un planeta), y cuando se conecta con dos o más expresiones, se dice que expresa una relación (como la relación de ser más grande que). La lógica de primer orden no hace ningún supuesto, sin embargo, sobre si existen o no las propiedades o las relaciones. Sólo se ocupa de estudiar el modo en que hablamos y razonamos con expresiones lingúisticas.

En la lógica de primer orden, los predicados son tratados como funciones. Una función es, metafóricamente hablando, una máquina que recibe un conjunto de cosas, las procesa, y devuelve como resultado una única cosa. A las cosas que entran a las funciones se las llama argumentos,4 y a las cosas que salen, valores o imágenes. Considérese por ejemplo la siguiente función matemática:

f(x) = 2x

Esta función toma números como argumentos y devuelve más números como valores. Por ejemplo, si toma el número 1, devuelve el número 2, y si toma el 5, devuelve el 10. En la lógica de primer orden, se propone tratar a los predicados como funciones que no sólo toman números como argumentos, sino expresiones como «Marte», «Mercurio» y otras que se verán más adelante. De este modo, la oración «Marte es un planeta» puede transcribirse, siguiendo la notación propia de las funciones, de la siguiente manera:

Planeta(Marte)

O, más abreviadamente:

P(m)

En la matemática existen además funciones que toman varios argumentos. Por ejemplo:

f(x,y) = x + y

Esta función, si toma los números 1 y 2, devuelve el número 3, y si toma el -5 y el -3, devuelve el -8. Siguiendo esta idea, la lógica de primer orden trata a los predicados que expresan relaciones, como funciones que toman dos o más argumentos. Por ejemplo, la oración «Caín mató a Abel» puede formalizarse así:

Mató(Caín,Abel)

O abreviando:

M(c,a)

Este procedimiento puede extenderse para tratar con predicados que expresan relaciones entre muchas entidades. Por ejemplo, la oración «Ana está sentada entre Bruno y Carlos» puede formalizarse:

S(a,b,c)

Constantes de individuo

Una constante de individuo es una expresión lingüística que refiere a una entidad. Por ejemplo «Marte», «Júpiter», «Caín» y «Abel» son constantes de individuo. También lo son las expresiones «1», «2», etc., que refieren a números. Una entidad no tiene que existir para que se pueda hablar acerca de ella, de modo que la lógica de primer orden tampoco hace supuestos acerca de la existencia o no de las entidades a las que refieren sus constantes de individuo.

Variables de individuo

Además de las constantes de individuo que hacen referencia a entidades determinadas, la lógica de primer orden cuenta con otras expresiones, las variables, cuya referencia no está determinada. Su función es similar a la de las expresiones del lenguaje natural como «él», «ella», «esto», «eso» y «aquello», cuyo referente varía con el contexto. Las variables generalmente se representan con letras minúsculas cerca del final del alfabeto latino, principalmente la x, y y z. Del mismo modo, en la matemática, la x en la función f(x) = 2x no representa ningún número en particular, sino que es algo así como un espacio vacío donde pueden insertarse distintos números. En conclusión, podemos representar una expresión como «esto es antiguo» con la expresión:

Antiguo(x)

O abreviadamente:

A(x)

Es evidente, sin embargo, que hasta que no se determine a qué refiere la x, no es posible asignar un valor de verdad a la expresión «esto es antiguo», del mismo modo que hasta que no se determine un número para la x en la función f(x) = 2x, no será posible calcular ningún valor para la función.

Por supuesto, al igual que con las constantes de individuo, las variables sirven también para formalizar relaciones. Por ejemplo, la oración «esto es más grande que aquello» se formaliza:

G(x,y)

Y también pueden combinarse constantes de individuo con variables. Por ejemplo en la oración «ella está sentada entre Bruno y Carlos»:

S(x,b,c)

Cuantificadores

Considérese ahora la siguiente expresión matemática:

x > 3

Esta expresión no es ni verdadera ni falsa, y parece que no lo será hasta que no reemplacemos a la x por algún número cualquiera. Sin embargo, también es posible dar un valor de verdad a la expresión si se le antepone un cuantificador. Un cuantificador es una expresión que afirma que una condición se cumple para un cierto número de individuos.5 En la lógica clásica, los dos cuantificadores más estudiados son el cuantificador universal y el cuantificador existencial.5 El primero afirma que una condición se cumple para todos los individuos de los que se está hablando,5 y el segundo que se cumple para al menos uno de los individuos.5 Por ejemplo, la expresión "para todo x" es un cuantificador universal, que antepuesto a "x < 3", produce:

Para todo x, x < 3

Esta es una expresión con valor de verdad, en particular, una expresión falsa, pues existen muchos números (muchos x) que son mayores que tres. Anteponiendo en cambio la expresión "para al menos un x", un cuantificador existencial, se obtiene:

Para al menos un x, x < 3

La cual resulta ser una expresión verdadera.

Adviértase ahora, sin embargo, que el valor de verdad de las dos expresiones anteriores depende de qué números se esté hablando. Si cuando se afirma "para todo x, x < 3", se está hablando sólo de los números negativos, por ejemplo, entonces

...

Descargar como (para miembros actualizados) txt (28 Kb)
Leer 17 páginas más »
Disponible sólo en Clubensayos.com