Matematicas
Enviado por mariaelenas • 1 de Junio de 2012 • 1.526 Palabras (7 Páginas) • 1.926 Visitas
VARIACION PROPORCIONAL
La proporcionalidad es la piedra angular de las matematicas, es la correspondencia de las partes,se utilizan la multiplicacion y la division para la resolucion de problemas.
Se señala que el orden de las cantidades de una razon son determinantes es decir la razon de niños en un salon de clases es... Las aplicaciones cotidianas del uso de la razon a escala y los porcentajes. Las escalas tienen la ventaja de que puden visualizarse y pueden servir como una introduccion al concepto de razon. Los porcentajes tienen la ventaja de que pueden utilizarse en contextos reales conocidos por los niños. La proporcionalidad tambien puede explicar su utilidad en trabajos de comparacion entre dos cantidades y no con sus valores originales. Una segunda utilidad es la de Variacion de una cantidad relativa a otra. Por ejemplo en una situacion de compra y venta entre el precio y la cantidad comprada.
¿Que caracteriza entonces a la variacion proporcinal? Es la transferencia de una cantidad a la otra,cambios multiplicativos como el doble o el triple, la mitad, la cuarta parte o bien cualquier otro multiplo
Enfoque
Enfoque 1.- Uso de tablas y razonamiento pre- proporcional
Enfoque 2.- Razonamiento proporcional (uso de la constancia de la razon)
Enfoque 3.- Unitario (Costo por unidad dividiendo y multiplicando)
Enfoque 4.- Algoritmico ( Uso de la regla de 3 )
El niño pasa por etapas de desarrolo en relacion al razonamiento proporcional estas pueden caracterizarse por:
Incompleta cuando ignora parte de los datos
Cualitativa ya toma en cuenta todos los datos
Aditiva Usa diferencias en vez de proporcionalidad
Pre-proporcionalidad razonamiento correcto que no se basa en la razon de dos cantidades sino en una combinacion de duplicar triplicar, tomar medios
Razonamiento proporcional uso directo de la razon entre dos cantidad para llegar al resultado.
LECTURA: Razón y Proporción
Un concepto y muchas posibilidades
Olimpia Figueras, Gonzalo López
Alicia Avila
FICHA DE COMENTARIO
Con base en el libro del maestro de segundo grado y el plan y programas de la SEP y la experiencia que he tenido en dos años en este grado algunos propósitos de matemáticas y específicamente el del razonamiento proporcional se considera ya en este grado aunque de manera encipiente o el profesor planea y se diseñan problemas cotidianos en donde se pretende que el niño vaya construyendo las nociones mas importantes relacionadas con el concepto de proporcionalidad aplicándolas en la resolución de problemas reales, comparando cuantitativamente, de manera aditiva, para iniciarlo en el proceso de la multiplicación sin llegar al concepto convencional del algoritmo.
Si los maestros de los primeros ciclos aplicaran estas estrategias, estaríamos sembrando la semilla para que al llegar al segundo y tercer ciclo el alumno tendría una base conceptual para resolver diferentes tipos de problemas; que se desprenden de la base que es la proporcionalidad.
1) La noción de la razón
2) Escala
3) Porcentaje
4) Variación proporcional y no proporcional (aditiva, multiplicativa, inversa, proporcionalidad)
5) La regla de tres (precio de productos)
6) Duplicación (Recetas de cocina)
Ya sabemos que este proceso es largo y lento por eso es necesario que el maestro diseñe actividades apropiadas para cada ciclo, sin olvidar que sería infructuoso si lo planteamos de una manera mecánica.
LECTURA
Las fracciones en situaciones de reparto y medición.
Martha Dávila, Olimpia Figueroa
FICHA DE COMENTARIO
Tradicionalmente el profesor que enseña fracciones toma como punto de partida el fraccionamiento de una unidad, pintando y colocando la fracción que indica la actividad, provocando dificultades en su aprendizaje en el concepto fracción. Uno de los motivos para esta dificultad es que el docente no toma en cuenta los saberes previos o extraescolares que el niño ya maneja. La pobreza de los significados de la fracción que se manejan en la escuela, la tendencia de los niños de dar a los números fraccionarios las propiedades y reglas aplicables a números enteros, la introducción prematura y errónea de la noción de la fracción, del lenguaje simbólico y sus algoritmos. La propuesta para sentar las bases de este aprendizaje es la de utilizar familias de problemas de reparto y medición como un medio para introducir el concepto fracción. El objetivo es que el niño aprenda a hacer particiones equitativas y utilice la partición como herramienta en la resolución de problemas de reparto y medición, compare fracciones sencillas, exprese de manera verbal el resultado de reparto. Descubra que los números enteros son insuficientes para hacer reparticiones exactas.
Le corresponde al maestro de los primeros años escolares plantear problemas sencillos en donde se repartan juguetes, dulces, y establecer las bases para la noción de fracción. Una recomendación será el trabajo en equipo, de 3, 4, 5 y proporcionarle material manipulable para que “Repartan equitativamente” entre todos los integrantes del equipo.
Los procesos de medición de longitudes, superficie, volumen, capacidad, peso, tiempo dan lugar al fraccionamiento de la unidad. Se sugiere que este tipo de actividades se inicien con la medición de longitudes con tiras en donde con un doblado puedan fraccionar en medios, cuartos, etc., ejemplo mi libro mide 2 tiras y una mitad. Se debe trabajar esta actividad de preferencia por equipos y el maestro observara el trabajo y hara preguntas
...