ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Polinomios


Enviado por   •  23 de Octubre de 2014  •  2.303 Palabras (10 Páginas)  •  167 Visitas

Página 1 de 10

Definición algebraica[editar]

Los polinomios están constituidos por un conjunto finito de variables (no determinadas o desconocidas) y constantes (llamadas coeficientes), con las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. Pueden ser de una o de varias variables.

Polinomios de una variable[editar]

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \scriptstyle\mathbb{R} o \scriptstyle\mathbb{C}, en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma

P(x)_{}^{} = a_n x^n + a_{n-1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Un polinomio P(x) \in K[x] no es más que una sucesión matemática finita \left\{{a_n}\right\}_n tal que a_n \in K.

Representado como:

P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n

el polinomio se puede escribir más concisamente usando sumatorios como:

P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.

Polinomios de varias variables[editar]

Como ejemplo, de polinomios de dos variables desarrollando los binomios:

(2)\begin{cases}

(x + y)^2 = x^2 + 2xy + y^2\\

(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\

(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \end{cases}

Estos polinomios son mónicos, homogéneos, simétricos y sus coeficientes son coeficientes binomiales.

Para obtener la expansión de las potencias de una resta (véase productos notables), basta con tomar -y en lugar de y en el caso anterior. La expresión (2) queda de la siguiente forma:

(x-y)^2=x^{2}-2xy+y^{2}\,

Los polinomios de varias variables, a diferencia de los de una variable, tienen en total más de una variable. Por ejemplo los monomios:

5xy, 3xz^2, 4xy^2z, \dots

En detalle el último de ellos 4xy_{}^2z es un monomio de tres variables (ya que en él aparecen las tres letras x, y y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de x, y y z respectivamente.

Grado de un polinomio[editar]

Artículo principal: Grado (polinomio)

Se define el grado de un monomio como el mayor exponente de su variable. El grado de un polinomio es el del monomio de mayor grado.

Ejemplos

P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).

P(x) = 3x + 2, polinomio de grado uno.

P(x) = 3x² + 2x, polinomio de grado dos.

P(x) = 2x3+ 3x + 2, polinomio de grado tres.

Convencionalmente se define el grado del polinomio nulo como \scriptstyle -\infty. En particular los números son polinomios de grado cero.

Operaciones con polinomios[editar]

Artículo principal: Operaciones con polinomios

Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes. Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.

Ejemplo

Sean los polinomios: P(x) = (2x_{}^3+4x+1) y Q(x)_{}^{} = (5x^2+3) , entonces el producto es:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (2x_{}^3+4x+1)(5x^2) + (2x^3+4x+1)(3)= (10x_{}^5 + 20x^3 + 5x^2) + (6x^3+12x+3)= 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Para poder realizar eficazmente la operación se tiene que adquirir los datos necesarios de mayor a menor. Una fórmula analítica que expresa el producto de dos polinomios es la siguiente:

P(X)Q(X)_{}^{} = \left( \sum_{i=0}^m a_i X^i \right)

\left(\sum_{j=0}^n b_j X^j \right) =

\sum_{k=0}^{m+n} \left(\sum_{p=0}^k a_p b_{k-p} \right) X^k

Aplicando esta fórmula al ejemplo anterior se tiene:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (1\cdot 3)x_{}^0 + (4 \cdot 3)x^1 + (1 \cdot 5)x^2 + (4\cdot 5+ 2\cdot 3)x^3 + (0)x^4 + (5\cdot 2)x^5 = 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Puede comprobarse que para polinomios no nulos se satisface la siguiente relación entre el grado de los polinomios \scriptstyle P(X) y \scriptstyle Q(X) y el polinomio producto \scriptstyle P(X)Q(X):

(*)\mbox{gr}(P(X)Q(X)) = \mbox{gr}(P(X)) + \mbox{gr}(Q(X))\,

Puesto que el producto de cualquier polinomio por el polinomio nulo es el propio polinomio nulo, se define convencionalmente que \scriptstyle \mbox{gr}(0) = -\infty (junto con la operación \forall p: -\infty + p = -\infty) por lo que la expresión (*) puede extenderse también al caso de que alguno de los polinomios sea nulo.

Funciones polinómicas[editar]

Artículo principal: Función polinómica

Una función polinómica es una función matemática expresada mediante un polinomio. Dado un polinomio P[x] se puede definir una función polinómica asociada al polinomio dado substituyendo la variable x por un elemento del anillo:

f_P:A \to A,\qquad \qquad a\in A \mapsto f_P(a)=a_n a^n + a_{n-1}a^{n-1}+\dots + a_1 a + a_0\in A

La funciones polinómicas reales son funciones suaves, es decir, son infinitamente diferenciables (tienen derivadas de todos los órdenes). Debido a su estructura simple, las funciones polinómicas son muy sencillas de evaluar numéricamente, y se usan ampliamente en análisis numérico para interpolación polinómica o para integrar numéricamente funciones más complejas. Una manera muy eficiente para evaluar polinomios es la utilización de la regla de Horner.

En álgebra lineal el polinomio característico de una matriz cuadrada codifica muchas propiedades importantes de la matriz. En teoría de los grafos el polinomio cromático de un grafo codifica las distintas maneras de colorear los vértices del grafo usando x colores.

Con el desarrollo de la computadora, los polinomios han sido remplazados por funciones spline en muchas áreas del análisis numérico. Las splines se definen a partir de polinomios y tienen mayor flexibilidad que los polinomios ordinarios cuando definen funciones simples y suaves. Éstas son usadas en la interpolación spline y en gráficos por computadora.

Ejemplos de funciones polinómicas[editar]

Note que las gráficas representan a las funciones polinómicas y no a los polinomios

...

Descargar como (para miembros actualizados) txt (16 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com