Que Es El Tiempo
Enviado por faguil • 19 de Julio de 2015 • 1.686 Palabras (7 Páginas) • 185 Visitas
¿Qué es el tiempo?
El tiempo es una magnitud física con la que medimos la duración o separación de acontecimientos, sujetos a cambio, de los sistemas sujetos a observación; esto es, el período que transcurre entre el estado del sistema cuando éste presentaba un estado X y el instante en el que X registra una variación perceptible para un observador (o aparato de medida).
El tiempo permite ordenar los sucesos en secuencias, estableciendo un pasado, un futuro y un tercer conjunto de eventos ni pasados ni futuros respecto a otro. En mecánica clásica esta tercera clase se llama "presente" y está formada por eventos simultáneos a uno dado.
En mecánica relativista el concepto de tiempo es más complejo: los hechos simultáneos ("presente") son relativos al observador, salvo que se produzcan en el mismo lugar del espacio; por ejemplo, un choque entre dos partículas.
Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es (debido a que es un símbolo y no una abreviatura, no se debe escribir con mayúscula, ni como "seg", ni agregando un punto posterior.
Hablamos de ganarlo, perderlo o ahorrarlo, pero lo cierto es que ni siquiera puede atesorarse. El tiempo avanza de manera inexorable y no hay nada que podamos hacer para modificar su curso. Imposible lograr que se desarrolle más lento o más rápido, o pretender guardar un poco para el futuro.
El tiempo no es otra cosa que el movimiento mismo. Todo en el universo está en movimiento, por lo tanto todo dentro del universo es víctima del paso del tiempo. Nada permanece inmóvil porque nada puede permanecer inmóvil.
El tiempo en mecánica clásica
En la mecánica clásica, el tiempo se concibe como una magnitud absoluta, es decir, es un escalar cuya medida es idéntica para todos los observadores (una magnitu1d relativa es aquella cuyo valor depende del observador concreto). Esta concepción del tiempo recibe el nombre de tiempo absoluto. Esa concepción está de acuerdo con la concepción filosófica de Kant, que establece el espacio y el tiempo como necesarios para cualquier experiencia humana. Kant asimismo concluyó que el espacio y el tiempo eran conceptos subjetivos. Mas, no por ello, Kant establecerá que tiempo y espacio sean dimensiones absolutas, ni en sí mismas, sí apoyadas, en cambio, por Newton y Leibniz respectivamente. Para Kant no son dimensiones sino formas puras de la intuición suministrada por la experiencia, de manera que, al no tratarse de magnitudes, no hay posible choque entre ellas. Fijado un evento, cada observador clasificará el resto de eventos según una división tripartita clasificándolos en: (1) eventos pasados, (2) eventos futuros y (3) eventos ni pasados y ni futuros. La mecánica clásica y la física pre-relativista asumen:
⦁ Fijado un acontecimiento concreto todos los observadores sea cual sea su estado de movimiento dividirán el resto de eventos en los mismos tres conjuntos (1), (2) y (3), es decir, dos observadores diferentes coincidirán en qué eventos pertenecen al pasado, al presente y al futuro, por eso el tiempo en mecánica clásica se califica de "absoluto" porque es una distinción válida para todos los observadores (mientras que en mecánica relativista esto no sucede y el tiempo se califica de "relativo").
⦁ En mecánica clásica, la última categoría, (3), está formada por un conjunto de puntos tridimensional, que de hecho tiene la estructura de espacio euclídeo (el espacio en un instante dado). Fijado un evento, cualquier otro evento simultáneo, de acuerdo con la mecánica clásica estará situado en la categoría (3).
Aunque dentro de la teoría especial de la relatividad y dentro de la teoría general de la relatividad, la división tripartita de eventos sigue siendo válida, no se verifican las últimas dos propiedades:
⦁ El conjunto de eventos ni pasados ni futuros no es tridimensional, sino una región cuatridimensional del espacio tiempo.
⦁ No existe una noción de simultaneidad independiente del observador como en mecánica clásica, es decir, dados dos observadores diferentes en movimiento relativo entre sí, en general diferirán sobre qué eventos sucedieron al mismo tiempo.
En mecánica relativista la medida del transcurso del tiempo depende del sistema de referencia donde esté situado el observador y de su estado de movimiento, es decir, diferentes observadores miden diferentes tiempos transcurridos entre dos eventos causalmente conectados. Por tanto, la duración de un proceso depende del sistema de referencia donde se encuentre el observador.
De acuerdo con la teoría de la relatividad, fijados dos observadores situados en diferentes marcos de referencia, dos sucesos A y B dentro de la categoría (3) (eventos ni pasados ni futuros), pueden ser percibidos por los dos observadores como simultáneos, o puede que A ocurra "antes" que B para el primer observador mientras que B ocurre "antes" de A para el segundo observador. En esas circunstancias no existe, por tanto, ninguna posibilidad de establecer una noción absoluta de simultaneidad independiente del observador. Según la relatividad general el conjunto de los sucesos dentro de la categoría (3) es un subconjunto tetradimensional topológicamente abierto del espacio-tiempo. Cabe aclarar que esta teoría sólo parece funcionar con la rígida condición de dos marcos de referencia solamente. Cuando se agrega un marco de referencia adicional,
...