ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Representación Geométrica De Los Números Reales


Enviado por   •  30 de Diciembre de 2013  •  825 Palabras (4 Páginas)  •  464 Visitas

Página 1 de 4

Geométricamente podemos representar el conjunto de los números reales mediante los puntos de una recta horizontal que llamaremos la recta real o el eje real. Para ello,escogemos un punto de la recta para representar el número $0$ y otro punto a la derecha de este para representar al número $1$. La longitud del segmento determinado por los puntos marcados $0$ y $1$ se selecciona como unidad de distancia. Utilizando esta unidad de distancia representamos los números positivos a la derecha del $0$ y los números negativos a la izquierda del $0.$ El entero positivo $n$ se representa por el punto situado a una distancia de $n$ unidades a la derecha del $0$ y el entero negativo $-n$ se representa por el punto situado a una distancia de $n$ unidades a la izquierda del $0$, como se indica en la siguiente figura donde se representan los enteros entre $-5$ y $5$.

Para representar un número racional positivo $\dfrac{p}{q}$ dividimos la unidad de distancia, es decir , el segmento determinado por $0$ y $1$ en $q$ partes iguales y le asignamos, a la derecha de $0$, el punto determinado por $p$ de estas partes de longitud $\dfrac{1}{q}$. Para representar el número racional negativo $-\dfrac{p}{q}$, procedemos de forma similar, pero tomando $p$ partes de longitud $\dfrac{1}{q}$ a la izquierda de $0$. La gráfica siguiente nos muestra algunos de los puntos que representan números racionales

La siguiente construcción nos muestra como representar el número irracional $\sqrt{2}$ sobre la recta:

Concretamente, el punto que representa a $\sqrt{2}$ se obtiene trazando desde el punto marcado $1$ un segmento de recta de longitud igual a la unidad y perpendicular a la recta real. Se forma un triángulo rectángulo cuya hipotenusa tiene longitud $\sqrt{2}$. Luego se traza un arco de círculo con centro en $0$ y radio $\sqrt{2}$, el punto de intersección de este arco con el eje real represente el número $\sqrt{2}$.

En general es imposible indicar de que forma se puede representar cualquier número irracional sobre la recta, pero aceptamos como un axioma que a cada número real le corresponde exactamente un punto sobre la recta y que recíprocamente, cada punto de la recta corresponde a exactamente un número real. Una correspondencia como esta se llama un sistema de coordenadas. El número correspondiente a un punto dado se llama la coordenada del punto. El punto que corresponde al número cero se llama el origen del sistema de coordenadas y usualmente lo representamos por O. Por ejemplo en la figura siguiente

la coordenada de $R$ es $-2$, la coordenada de $P$ es $1$, la coordenada de $T$ es $\pi$ etc.

En la práctica, se acostumbra a identificar un número real con el punto sobre la recta que lo representa y, a utilizar como sinónimas las expresiones " el punto $x$" y " el número $x$".

Para representar la distancia entre

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com