Fórmulas de Cálculo Diferencial e Integral
Enviado por oRlwy • 12 de Agosto de 2022 • Informe • 6.683 Palabras (27 Páginas) • 89 Visitas
[pic 1][pic 2][pic 3]
Fórmulas de Cálculo Diferencial e Integral VER.6.8 | (a + b) ⋅ (a2 − ab + b2 ) = a3 + b3 (a + b) ⋅ (a3 − a2b + ab2 − b3 ) = a4 − b4 (a + b) ⋅ (a4 − a3b + a2b2 − ab3 + b4 ) = a5 + b5 (a + b) ⋅ (a5 − a4b + a3b2 − a2b3 + ab4 − b5 ) = a6 − b6 (a + b) ⋅ ⎛ ∑n (−1)k +1 an−k bk−1 ⎞ = an + bn ∀ n ∈ Æ impar ⎜ ⎟ ⎝ k =1 ⎠ (a + b) ⋅ ⎛ ∑n −1)k +1 an−k bk−1 ⎞ = an − bn ∀ n ∈ Æ par ⎜ ( ⎟ ⎝ k =1 ⎠ SUMAS Y PRODUCTOS n a1 + a2 +⋯+ an = ∑ak k =1 n ∑c = nc k =1 n n ∑cak = c∑ak k =1 k =1 n n n ∑(ak + bk ) = ∑ak + ∑bk k =1 k =1 k =1 n ∑(ak − ak−1 ) = an − a0 k =1 ∑n ⎡a + (k − 1) d ⎤ = n ⎡2a + (n − 1) d ⎤ ⎣ ⎦ 2 ⎣ ⎦ k =1 = n (a + l ) 2 ∑n 1 − rn a − rl ark−1 = a = k =1 1 − r 1 − r ∑n k = 1 (n2 + n) k =1 2 ∑n 1 2n3 + 3n2 + n) k 2 = ( k =1 6 ∑n k 3 = 1 (n4 + 2n3 + n2 ) k =1 4 ∑n k 4 = 1 (6n5 + 15n4 + 10n3 − n) k =1 30 1 + 3 + 5 +⋯+ (2n − 1) = n2 n n! = ∏ k k =1 ⎛ n ⎞ n! ⎜ ⎟ = , k ≤ n ⎝ k ⎠ (n − k )!k ! ( x + y )n = ∑n ⎛ n ⎞ n−k yk ⎜ ⎟ x k =0 ⎝ k ⎠ ( x + x +⋯+ x )n = ∑ n! xn1 ⋅ xn2 ⋯ xnk 1 2 k n !n !⋯n ! 1 2 k 1 2 k CONSTANTES π = 3.14159265359… e = 2.71828182846… TRIGONOMETRÍA senθ = CO cscθ = 1 HIP senθ cosθ = CA secθ = 1 HIP cosθ tgθ = senθ = CO ctgθ = 1 cosθ CA tgθ π radianes=180∘ HIP CO θ CA | θ | sin | cos | tg | ctg | sec | csc | Gráfica 4. Las funciones trigonométricas inversas arcctg x , arcsec x , arccsc x : 4 3 2 1 0 -1 arc ctg x arc sec x arc csc x -2 -5 0 5 IDENTIDADES TRIGONOMÉTRICAS 2 2 sin θ + cos θ = 1 1 + ctg2 θ = csc2 θ tg2 θ + 1 = sec2 θ sin (−θ ) = −sinθ cos (−θ ) = cosθ tg (−θ ) = − tgθ sin (θ + 2π ) = sinθ cos (θ + 2π ) = cosθ tg (θ + 2π ) = tgθ sin (θ + π ) = −sinθ cos (θ + π ) = −cosθ tg (θ + π ) = tgθ sin (θ + nπ ) = (−1)n sinθ cos (θ + nπ ) = (−1)n cosθ tg (θ + nπ ) = tgθ sin (nπ ) = 0 cos (nπ ) = (−1)n tg (nπ ) = 0 sin ⎛ 2n + 1π ⎞ = (−1)n ⎜ 2 ⎟ ⎝ ⎠ cos ⎛ 2n + 1π ⎞ = 0 [pic 4] ⎜ ⎟ ⎝ 2 ⎠ tg⎛ 2n + 1π ⎞ =∞ [pic 5] ⎜ ⎟ ⎝ 2 ⎠ sinθ = cos⎛θ − π ⎞ ⎜ 2 ⎟ ⎝ ⎠ cosθ = sin ⎛θ + π ⎞ ⎜ ⎟ ⎝ 2 ⎠ sin (α ± β ) = sin α cos β ± cosα sin β cos (α ± β ) = cosα cos β ∓ sinα sin β tg (α ± β ) = tgα ± tg β 1 ∓ tgα tg β sin 2θ = 2sinθ cosθ cos 2θ = cos2 θ − sin2 θ tg 2θ = 2tgθ 1 − tg2 θ sin2 θ = 1 (1 − cos 2θ ) 2 cos2 θ = 1 (1 + cos 2θ ) 2 tg2 θ = 1 − cos 2θ 1 + cos 2θ | sin α + sin β = 2 sin 1 (α + β ) ⋅ cos 1 (α − β ) 2 2 sin α − sin β = 2 sin 1 (α − β ) ⋅ cos 1 (α + β ) 2 2 cosα + cos β = 2 cos 1 (α + β ) ⋅ cos 1 (α − β ) 2 2 cosα − cos β = −2 sin 1 (α + β ) ⋅ sin 1 (α − β ) 2 2 sin (α ± β ) tgα ± tg β = cosα ⋅ cos β sin α ⋅ cos β = 1 ⎡⎣sin (α − β ) + sin (α + β )⎤⎦ 2 sin α ⋅ sin β = 1 ⎡⎣cos (α − β ) − cos (α + β )⎤⎦ 2 cosα ⋅ cos β = 1 ⎣⎡cos (α − β ) + cos(α + β )⎤⎦ 2 tgα ⋅ tg β = tgα + tg β ctgα + ctg β FUNCIONES HIPERBÓLICAS ex − e− x sinh x = 2 x − x cosh x = e + e 2 sinh x ex − e−x tgh x = = cosh x ex + e−x 1 ex + e−x ctgh x = = tgh x ex − e−x sech x = 1 = 2 cosh x ex + e−x csch x = 1 = 2 sinh x ex − e−x sinh : ℝ → ℝ cosh : ℝ → [1, ∞ tgh : ℝ → −1,1 ctgh : ℝ − {0} → −∞ , −1 ∪ 1, ∞ sech : ℝ → 0 ,1] csch : ℝ − {0} → ℝ − {0} Gráfica 5. Las funciones hiperbólicas sinh x , cosh x , tgh x : 5 4 3 2 1 0 -1 -2 senh x -3 cosh x tgh x -4 -5 0 5 FUNCIONES HIPERBÓLICAS INV sinh−1 x = ln (x + x2 + 1), ∀x ∈ ℝ cosh−1 x = ln (x ± x2 − 1), x ≥ 1 tgh−1 x = 1 ln ⎛ 1 + x ⎞ , x < 1 2 ⎜ 1 − x ⎟ ⎝ ⎠ ctgh−1 x = 1 ln ⎛ x + 1 ⎞ , x > 1 2 ⎜ x − 1 ⎟ ⎝ ⎠ ⎛ 1 ± 1 − x2 ⎞ sech−1 x = ln ⎜ ⎟ , 0 < x ≤ 1 ⎜ x ⎟ ⎝ ⎠ ⎛ 1 x2 + 1 ⎞ csch−1 x = ln ⎜ + ⎟, x ≠ 0 ⎜ x x ⎟ ⎝ ⎠ | |||
0∘ | 0 | 1 | 0 | ∞ | 1 | ∞ | |||||||
30∘ | 1 2 | 3 2 | 1 3 | 3 | 2 3 | 2 | |||||||
45∘ | 1 2 | 1 2 | 1 | 1 | 2 | 2 | |||||||
60∘ | 3 2 | 1 2 | 3 | 1 3 | 2 | 2 3 | |||||||
Jesús Rubí Miranda (jesusrubim@yahoo.com) http://www.geocities.com/calculusjrm/ | 90∘ | 1 | 0 | ∞ | 0 | ∞ | 1 | ||||||
y =∠sin x y ∈ ⎡− π π ⎤ ⎢⎣ , ⎥⎦ 2 2 y =∠ cos x y ∈[0,π ] y =∠ tg x y ∈ − π π , 2 2 y =∠ ctg x =∠ tg 1 y ∈ 0,π x y =∠ sec x =∠cos 1 y ∈[0,π ] x y =∠ csc x =∠sen 1 y ∈ ⎡− π , π ⎤ x ⎢⎣ 2 2 ⎥⎦ Gráfica 1. Las funciones trigonométricas: sin x , cos x , tg x : 2 1.5 1 0.5 0 -0.5 -1 -1.5 sen x cos x tg x -2 -8 -6 -4 -2 0 2 4 6 8 Gráfica 2. Las funciones trigonométricas csc x , sec x , ctg x : 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 csc x -2 sec x ctg x -2.5 -8 -6 -4 -2 0 2 4 6 8 Gráfica 3. Las funciones trigonométricas inversas arcsin x , arccos x , arctg x : 4 3 2 1 0 -1 arc sen x arc cos x arc tg x -2 -3 -2 -1 0 1 2 3 | |||||||||||||
VALOR ABSOLUTO a = ⎧a si a ≥ 0 ⎨−a si a < 0 ⎩ a = −a a ≤ a y − a ≤ a a ≥ 0 y a = 0 ⇔ a = 0 n n ab = a b ó ∏ak = ∏ ak k =1 k =1 n n a + b ≤ a + b ó ∑ak ≤ ∑ ak k =1 k =1 EXPONENTES a p ⋅ aq = ap +q a p = p−q aq a (a p )q = a pq (a ⋅ b)p = a p ⋅ bp ⎛ a ⎞ p a p ⎜ ⎟ = p ⎝ b ⎠ b ap / q = q a p LOGARITMOS log N = x ⇒ ax = N a loga MN = loga M + loga N log M = log M − log N a N a a loga N = r loga N r log N = logb N = ln N a log a ln a b log10 N = log N y loge N = ln N ALGUNOS PRODUCTOS a ⋅ (c + d ) = ac + ad (a + b) ⋅ (a − b) = a2 − b2 (a + b) ⋅ (a + b) = (a + b)2 = a2 + 2ab + b2 (a − b) ⋅ (a − b) = (a − b)2 = a2 − 2ab + b2 ( x + b) ⋅ ( x + d ) = x2 + (b + d ) x + bd (ax + b) ⋅ (cx + d ) = acx2 + (ad + bc) x + bd (a + b) ⋅ (c + d ) = ac + ad + bc + bd (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a − b)3 = a3 − 3a2b + 3ab2 − b3 (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc (a − b) ⋅ (a2 + ab + b2 ) = a3 − b3 (a − b) ⋅ (a3 + a2b + ab2 + b3 ) = a4 − b4 (a − b) ⋅ (a4 + a3b + a2b2 + ab3 + b4 ) = a5 − b5 (a − b) ⋅ ⎛ ∑n an−k bk−1 ⎞ = an − bn ∀n ∈ Æ ⎜ ⎟ ⎝ k =1 ⎠ |
[pic 6][pic 7][pic 8][pic 9][pic 10][pic 11][pic 12][pic 13][pic 14][pic 15][pic 16][pic 17][pic 18][pic 19][pic 20][pic 21][pic 22][pic 23][pic 24][pic 25][pic 26][pic 27][pic 28][pic 29][pic 30][pic 31][pic 32][pic 33][pic 34][pic 35][pic 36][pic 37][pic 38][pic 39][pic 40][pic 41][pic 42][pic 43][pic 44][pic 45][pic 46][pic 47][pic 48][pic 49][pic 50][pic 51][pic 52][pic 53][pic 54][pic 55][pic 56][pic 57][pic 58][pic 59][pic 60][pic 61][pic 62][pic 63][pic 64][pic 65][pic 66][pic 67][pic 68][pic 69][pic 70][pic 71][pic 72][pic 73][pic 74][pic 75][pic 76][pic 77][pic 78][pic 79][pic 80][pic 81][pic 82][pic 83][pic 84][pic 85][pic 86][pic 87][pic 88][pic 89][pic 90][pic 91][pic 92][pic 93][pic 94][pic 95][pic 96][pic 97][pic 98][pic 99][pic 100][pic 101][pic 102][pic 103][pic 104][pic 105][pic 106][pic 107][pic 108][pic 109][pic 110][pic 111][pic 112][pic 113][pic 114]
...