La teoría de colas
Enviado por petervaquilla • 9 de Julio de 2014 • Ensayo • 2.123 Palabras (9 Páginas) • 257 Visitas
Teoría de Colas
La teoría de colas es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los "clientes" llegan a un "lugar" demandando un servicio a un "servidor", el cual tiene una cierta capacidad de atención. Si el servidor no está disponible inmediatamente y el cliente decide esperar, entonces se forma la línea de espera.
La teoría de colas es una colección de modelos matemáticos que describen sistemas de línea de espera particulares o sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para un sistema dado.
Los sistemas de colas son modelos de sistemas que proporcionan servicio. Como modelo, pueden representar cualquier sistema en donde los trabajos o clientes llegan buscando un servicio de algún tipo y salen después de que dicho servicio haya sido atendido. Podemos modelar los sistemas de este tipo tanto como colas sencillas o como un sistema de colas interconectadas formando una red de colas.
Elementos existentes en un modelo de colas
Fuente de entrada o población potencial: Es un conjunto de individuos (no necesariamente seres vivos) que pueden llegar a solicitar el servicio en cuestión. Podemos considerarla finita o infinita. Aunque el caso de infinitud no es realista, sí permite (por extraño que parezca) resolver de forma más sencilla muchas situaciones en las que, en realidad, la población es finita pero muy grande. Dicha suposición de infinitud no resulta restrictiva cuando, aun siendo finita la población potencial, su número de elementos es tan grande que el número de individuos que ya están solicitando el citado servicio prácticamente no afecta a la frecuencia con la que la población potencial genera nuevas peticiones de servicio.
Cliente: Es todo individuo de la población potencial que solicita servicio. Suponiendo que los tiempos de llegada de clientes consecutivos son 0<t1<t2<..., será importante conocer el patrón de probabilidad según el cual la fuente de entrada genera clientes. Lo más habitual es tomar como referencia los tiempos entre las llegadas de dos clientes consecutivos: consecutivos: clientes consecutivos: T{k} = tk - tk-1, fijando su distribución de probabilidad. Normalmente, cuando la población potencial es infinita se supone que la distribución de probabilidad de los Tk (que será la llamada distribución de los tiempos entre llegadas) no depende del número de clientes que estén en espera de completar su servicio, mientras que en el caso de que la fuente de entrada sea finita, la distribución de los Tk variará según el número de clientes en proceso de ser atendidos.
Capacidad de la cola: Es el máximo número de clientes que pueden estar haciendo cola (antes de comenzar a ser servidos). De nuevo, puede suponerse finita o infinita. Lo más sencillo, a efectos de simplicidad en los cálculos, es suponerla infinita. Aunque es obvio que en la mayor parte de los casos reales la capacidad de la cola es finita, no es una gran restricción el suponerla infinita si es extremadamente improbable que no puedan entrar clientes a la cola por haberse llegado a ese número límite en la misma.
Disciplina de la cola: Es el modo en el que los clientes son seleccionados para ser servidos. Las disciplinas más habituales son:
La disciplina FIFO (first in first out), también llamada FCFS (first come first served): según la cual se atiende primero al cliente que antes haya llegado.
La disciplina LIFO (last in first out), también conocida como LCFS (last come first served) o pila: que consiste en atender primero al cliente que ha llegado el último.
La RSS (random selection of service), o SIRO (service in random order), que selecciona a los clientes de forma aleatoria.
Mecanismo de servicio: Es el procedimiento por el cual se da servicio a los clientes que lo solicitan. Para determinar totalmente el mecanismo de servicio debemos conocer el número de servidores de dicho mecanismo (si dicho número fuese aleatorio, la distribución de probabilidad del mismo) y la distribución de probabilidad del tiempo que le lleva a cada servidor dar un servicio. En caso de que los servidores tengan distinta destreza para dar el servicio, se debe especificar la distribución del tiempo de servicio para cada uno.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
La cola, propiamente dicha, es el conjunto de clientes que hacen espera, es decir los clientes que ya han solicitado el servicio pero que aún no han pasado al mecanismo de servicio.
El sistema de la cola: es el conjunto formado por la cola y el mecanismo de servicio, junto con la disciplina de la cola, que es lo que nos indica el criterio de qué cliente de la cola elegir para pasar al mecanismo de servicio. Estos elementos pueden verse más claramente en la siguiente figura:
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Un modelo de sistema de colas debe especificar la distribución de probabilidad de los tiempos de servicio para cada servidor.
La distribución más usada para los tiempos de servicio es la exponencial, aunque es común encontrar la distribución degenerada o determinística (tiempos de servicio constantes) o la distribución Erlang (Gamma).
MODELOS QUE SOPORTA
Notación de Kendall
Por convención los modelos que se trabajan en teoría de colas se etiquetan
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Las distribuciones que se utilizan son:
• M: Distribución exponencial (markoviana)
• D: Distribución degenerada (tiempos constantes)
• E k: Distribución Erlang
• G: Distribución general
M / M / s: Modelo donde tanto los tiempos entre llegada como los tiempo de servicio son exponenciales y se tienen s servidores.
M / G / 1: Tiempos entre llegada exponenciales, tiempos de servicio general y 1 sólo servidor
Terminología
Usualmente siempre es común utilizar la siguiente terminología estándar:
• Estado del sistema : Número de clientes en el sistema.
• Longitud de la cola: Número de clientes que esperan servicio.
• N(t) : Número de clientes en el sistema de colas en el tiempo t (t 0).
• Pn (t): Probabilidad de que exactamente n clientes estén en el sistema en el tiempo t, dado el número en el tiempo cero.
• s : Número de servidores en el sistema de colas.
• n : Tasa media de llegadas (número esperado de llegadas por unidad de tiempo) de nuevos clientes cuando hay n clientes en el sistema.
• n : Tasa media de
...