Exedente De Consimdor Mediante Integral Indefinida
bvxcvxcxv01412516 de Julio de 2014
5.755 Palabras (24 Páginas)444 Visitas
INTRODUCCIÓN ALA INTEGRAL DEFINIDA
La técnica de integración se desarrolló sobre todo a partir del siglo XVII, paralelamente a los avances que tuvieron lugar en las teorías sobre derivadas y en el cálculo diferencial. Parece, por ello, eminentemente razonable encuadrar el estudio de sus conceptos y técnicas en un marco inicial de carácter práctico, en el que el análisis de problemas administrativos típicos lleve de modo natural a la necesidad de "descubrir" los conceptos básicos de estas ramas de la matemática. El alumno debe ser confrontado con el reto de alcanzar resultados numéricos en diversos problemas típicos del ámbito administrativo, con miras a que disfrute de la satisfacción intelectual que derivará del alumbramiento en su mente de unas técnicas nuevas, prodigiosamente útiles.
Al mismo tiempo, el estudio de estas técnicas debe motivar la reflexión del alumno sobre la capacidad del espíritu humano para abstraer de la realidad material formulaciones generales y establecer a partir de ellas construcciones lógico-deductivas fundadas sobre bases axiomáticas. En la administración y la economía, en las que se impone analizar variables que cambian a lo largo del tiempo y entre las cuales pueden discernirse relaciones funcionales susceptibles de ser expresadas matemáticamente. Es por ello, que el cálculo diferencial e integral, así como el álgebra lineal constituye ramas de la matemática realmente necesarias para la interpretación y análisis de diferentes modelos económicos. El hombre de empresa moderno, el administrador y el economista tienen en estas herramientas un aliado poderoso para el empleo racional de los recursos con miras a su mejor aprovechamiento y a la creación de los bienes y servicios que la sociedad reclama. La disciplina que acompaña a su aprendizaje contribuye de modo significativo al desarrollo de la intuición matemática, a un pensamiento lógico y metódico, y a la consolidación de hábitos de trabajo ordenados, pulcros y precisos.
Este artículo permite captar rápidamente la interpretación geométrica de la Integral Definida: área bajo la curva entre dos puntos dados. Se utiliza un procedimiento diferente al de aproximaciones sucesivas de rectángulos, usualmente empleado; contiene al de integración por medio de trapecios y es consecuencia de un enfoque propuesto para el cálculo de áreas de polígonos.
Para su comprensión es conveniente la consulta del artículo: Área de los Polígonos- enfoque para el cálculo, publicado en monografías.com, por cuanto se utiliza la fórmula general de cálculo propuesta en el mencionado trabajo. No obstante, en forma rápida, introduciremos la fórmula para el caso de figuras de tres y cuatro lados.En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado las integrales indefinidas de funciones sencillas. Sin embargo no quedan claros ni su significado ni su utilidad. Éstos son los objetivos de este tema, para lo cual se dará la interpretación que Riemann, matemático alemán, dio a conocer en el siglo XIX.
MARCO CONCEPTUAL
Históricamente, el cálculo diferencial e integral, así como el álgebra lineal; nacieron de la necesidad de atender problemas que exigían la descripción cuantitativa de magnitudes que varían con el paso del tiempo, como también de modelos o sistemas que involucren diferentes variables de estudio. Los primeros desarrollos fueron esencialmente guiados por la intuición; sólo después, y tras no pocos intentos fallidos, se produjo la formalización rigurosa de la disciplina. Parece, por ello, eminentemente razonable encuadrar el estudio de sus conceptos y técnicas en un marco inicial de carácter práctico, en el que el análisis de problemas administrativos típicos lleve de modo natural a la necesidad de "descubrir" los conceptos básicos de estas ramas de la matemática. El alumno debe ser confrontado con el reto de alcanzar resultados numéricos en diversos problemas típicos del ámbito administrativo, con miras a que disfrute de la satisfacción intelectual que derivará del alumbramiento en su mente de unas técnicas nuevas, prodigiosamente útiles.
Al mismo tiempo, el estudio de estas técnicas debe motivar la reflexión del alumno sobre la capacidad del espíritu humano para abstraer de la realidad material formulaciones generales y establecer a partir de ellas construcciones lógico-deductivas fundadas sobre bases axiomáticas.
OBJETIVOS
Dominar los conceptos necesarios del cálculo diferencial e integral, así como del álgebra lineal; para formular, resolver e interpretar cuantitativamente situaciones reales en la administración y en la economía empresarial.
Además de demostrar que la modelación matemática de los fenómenos económicos, ayudará a una mejor formulación y a una resolución sistemática (es decir: ordenada y efectiva) de los problemas que la Economía necesita que sean resueltos, pretendiendo además que sirva de ayuda para preparar a los contadores desde una perspectiva de las ciencias económicas.
Se hace énfasis dentro del proceso, precisamente en el modelado, pues la resolución puede ser auxiliada con el uso de las nuevas tecnologías (TIC).
Un modelo matemático se define como una descripción desde el punto de vista de las matemáticas desde un hecho o fenómeno del mundo real, desde el tamaño de la población, hasta fenómenos físicos como la velocidad, aceleración o densidad. El objetivo del modelo matemático es entender ampliamente el fenómeno y tal vez predecir su comportamiento en el futuro.
OBJETIVOS GENERALES.
Aprender el estudiante de herramientas básicas que le permitan profundizar en actividades
Académicas posteriores y en aplicaciones económicas y de negocios que exigen un conocimiento amplio del concepto de integrales.
OBJETIVOS ESPECÍFICOS.
Entender y Apropiarse del concepto de derivada para aplicarlo en la solución de problemas específicos y típicos de la Administración de Negocios.
APLICACIONES A LA ADMINISTRACIÓN Y LA ECONOMÍA
Entre las funciones que se utilizan en economía para hacer modelos de situaciones de mercado se estudian las funciones de oferta y de demanda.
FUNCIÓN DE OFERTA: una empresa que fabrica y vende un determinado producto utiliza esta función para relacionar la cantidad de productos que está dispuesta a ofrecer en el mercado con el precio unitario al que se puede vender esa cantidad. Podemos decir que, en respuesta a distintos precios, existe una cantidad correspondiente de productos que los fabricantes están dispuestos a ofrecer en el mercado en algún período específico.
Cuanto mayor es el precio, mayor será la cantidad de productos que la empresa está dispuesta a ofrecer. Al reducirse el precio, se reduce la cantidad ofrecida. Esto nos permite asegurar que la función de oferta es una función creciente. Si p representa el precio por unidad y q la cantidad ofrecida correspondiente entonces a la ley que relaciona p y q se la denomina función de oferta y a su gráfica se la conoce como gráfica de oferta.
A esta función la simbolizamos p=o (q) donde sabemos que p es el precio unitario y q la cantidad de productos que, a ese precio, se ofrece en el mercado.
FUNCIÓN DE DEMANDA: La empresa utiliza esta función para relacionar la cantidad de productos demandada por los consumidores, con el precio unitario al que se puede vender esa cantidad, de acuerdo con la demanda. En general, si el precio aumenta, se produce una disminución de la cantidad demandada del artículo porque no todos los consumidores están dispuestos a pagar un precio mayor por adquirirlo. La demanda disminuye al aumentar el precio por eso esta es una función decreciente como lo observamos en los ejemplos gráficos. Podemos asegurar entonces que para cada precio de un producto existe una cantidad correspondiente de ese producto que los consumidores demandan en determinado período. Si el precio por unidad de un producto está dado por p y la cantidad correspondiente en unidades está dada por q la ley que los relaciona se denomina función de demanda. A su gráfica se la llama gráfica de demanda.
A esta función la simbolizamos p =d (q) donde sabemos que p es el precio unitario y q la cantidad de productos que, a ese precio, se demanda en el mercado.
SUPERAVIT DE CONSUMIDORES Y PRODUCTORES
El mercado determina el precio al que un producto se vende. El punto de intersección de la curva de la demanda y de la curva de la oferta para un producto da el precio de equilibrio. En el precio de equilibrio, los consumidores comprarán la misma cantidad del producto que los fabricantes quieren vender. Sin embargo, algunos consumidores aceptarán gastar más en un artículo que el precio de equilibrio. El total de las diferencias entre el precio de equilibrio del artículo y los mayores precios que todas esas personas aceptan pagar se considera como un ahorro de esas personas y se llama el superávit de los consumidores.
El área bajo la curva de demanda es la cantidad total que los consumidores están dispuestos a pagar por q0 artículos. El área sombreada bajo la recta y = p0 muestra la cantidad total que los consumidores realmente gastarán en el precio p0 de equilibrio. El área entre la curva y la recta representa el superávit de los consumidores.
El superávit de los consumidores
...