Análisis matemático práctica
Enviado por JEREMY LEOMAR MARQUINA ORRILLO • 27 de Septiembre de 2023 • Práctica o problema • 1.440 Palabras (6 Páginas) • 31 Visitas
[pic 1]
[pic 2]
[pic 3]
[pic 4]
[pic 5]
[pic 7][pic 6]
[pic 8]
[pic 9]
[pic 10]
- [pic 11]
[pic 12]
- [pic 13]
[pic 14]
[pic 15]
[pic 16]
[pic 17]
[pic 18]
[pic 19]
[pic 20]
[pic 21]
[pic 22]
[pic 23]
[pic 24]
[pic 25]
[pic 26]
-La función es continua en el intervalo cerrado [1,3] por ser polinómica.
-Es derivable e el intervalo abierto (1,3) por ser polinómica.
[pic 27]
Entonces existe un punto c en el intervalo abierto con derivada nula en dicho punto f ´ (c)=0
[pic 28]
[pic 29]
[pic 30]
[pic 31]
[pic 32]
BLOQUE II
1.f(x) = 2x² - 7x + 10. [2;5]. a = 2. b = 5
f’(c) = (f(b) – f(a))/(b -a)
f’(c) = (4 – 25)/(5-2) = -21/3 = 7
f’(x) = 4x – 7 » f’(c) = 4c -7 = 7 c = 7/2
2. f(x) = x³ + x -1 [0;2]. a = 0. b = 2
f’(c) = (f(b) – f(a))/(b -a)
f’(c) = 9 – (-1)/2 = 5
f’(x) = 3x² + 1 » f’ (c) = 3c² + 1 = 5 » 3c² = 4. c= ±√4/3
3. f(x) = 5 – 4/x [1;4]. a = 1. b = 4
F’(c) = (f(b) – f(a))/(b -a)
f’(c) = (4 – 1)/(4 - 1) = 3/3 = 1
f’(x) = 4/x² » f’(c) = 4/c²= 1 c = ±2
4. f(x) = 2x – 3 si x < 4. [2;6]. a = 2 b = 6
-x²+10x-19 si x ≥ 4
F’(c) = (f(b) – f(a))/(b -a)
F’(c) = 5 – 1/(6-2) = 4/4 = 1
Derivamos ambas funciones
F(x) = 2x-3 » f’(x) = 2 no cumple
F(x) = -x²+10x-19 = -2x + 10 cumple
F’(c) = -2c + 10 = 1 » f’(c)= -2c = -9 » c= 9/2
5. f(x) = 4x² + 4x si x ≤ 1. [0;4]. a = 0 b = 4
-4x³ + 12x². Si 1 < x < 2
x³ - 3x² + 20. Si x ≥ 2
F’(c) = (f(b) – f(a))/(b -a)
F’(c) = 36 – 0/4 = 9
Derivamos las 3 funciones
¹ F(x) = 4x² + 4x » f’(x) = 8x + 4
F’(c) = 8c + 4 = 9 » c = 5/8
² F(x) = -4x³ + 12x² » f’(x) = -12x² + 24x
F’(c) = -12c² + 24c = 9 » f’(c) = 4c² - 8c – 3 » (2c-3).(2c-1) = 0 c1 = 3/2. c2= 1/2
³ F(x) = x³ - 3x² + 20 » f’(x) = 3x² - 6x
F’(c) = 3c² - 6c = 9 » f’(x) = c² - 2c – 3 = 0 » (c – 3).(c + 1) = 0 c1 = 3 c2 = -1
6. f(x) = x³ - x² [-1;3]. a = -1. b = 4
f’(c) = (f(b) – f(a))/(b -a)
f’(c) = [18– (-2)]/[(3 – (-1)] = 20/4 = 5
f’(x) = 3x² - 2x » f’(c) = 3c² - 2c = 5 » f’(c) = 3c² -2c -5 = 0
[-b ± √b² - 4ac]/2(a). = [ –(-2) ± √(-2)² - 4(3)(-5)] / 2(3)
(2 ± √4+60)/2(3) = (2 ± 8)/6. C1= 10/6 = 5/3. C2 = -6/6 = 1
[pic 33]
[pic 34]
[pic 35]
Entonces aplicando la Regla de L´Hopital se tiene:
[pic 36]
[pic 37]
2) [pic 38]
[pic 39]
[pic 40]
[pic 41]
Aplicando L’Hopital:
[pic 42]
[pic 43]
[pic 44]
[pic 45]
[pic 46]
[pic 47]
[pic 48]
[pic 49]
[pic 50]
[pic 51]
5) [pic 52]
[pic 53]
[pic 54]
6) [pic 55]
[pic 56]
[pic 57]
[pic 58]
[pic 59]
[pic 60]
[pic 61]
[pic 62]
[pic 63]
[pic 65][pic 64]
- [pic 66]
- [pic 67]
- [pic 68]
- [pic 69]
[pic 70]
[pic 71]
[pic 72]
[pic 73]
[pic 74]
[pic 76][pic 75]
- [pic 77]
- [pic 78]
- [pic 79]
- [pic 80]
- [pic 81]
[pic 82]
[pic 83]
[pic 84]
[pic 85]
[pic 86]
[pic 88][pic 87]
- [pic 89]
- [pic 90]
- [pic 91]
- [pic 92]
[pic 93][pic 94]
[pic 95]
[pic 96]
[pic 97]
[pic 98]
[pic 99]
[pic 100]
[pic 101]
[pic 102][pic 103]
[pic 104]
[pic 105]
[pic 106]
[pic 107]
[pic 108]
[pic 109]
[pic 110]
[pic 111]
- [pic 112]
- [pic 113]
- [pic 114]
[pic 116][pic 115]
[pic 117]
[pic 118]
[pic 119]
[pic 120]
[pic 121]
[pic 122]
[pic 123]
BLOQUE V: Hallar los extremos absolutos de las funciones[pic 124]
- [pic 125][pic 126]
[pic 127]
, PUNTOS CRÍTICOS[pic 128]
[pic 129]
[pic 130]
[pic 131]
[pic 132]
[pic 133]
[pic 134][pic 135]
...