Las Enzimas
Enviado por Aleinny • 22 de Octubre de 2013 • 1.964 Palabras (8 Páginas) • 276 Visitas
Las Enzimas
Son moléculas de naturaleza proteica que catalizan reacciones químicas, siempre que sean termodinámicamente posibles: Una enzima hace que una reacción química que es energéticamente posible pero que transcurre a una velocidad muy baja, sea cinéticamente favorable, es decir, transcurra a mayor velocidad que sin la presencia de la enzima. En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en moléculas diferentes denominadas productos. Casi todos los procesos en las células necesitan enzimas para que ocurran a unas tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.
Estructuras y mecanismos
Las enzimas son generalmente proteínas globulares que pueden presentar tamaños muy variables, desde 62 aminoácidos como en el caso del monómero de la oxalocrotonato tautomerasa, hasta los 2.500 presentes en la sintasa de ácidos grasos.
Las actividades de las enzimas vienen determinadas por su estructura tridimensional, la cual viene a su vez determinada por la secuencia de aminoácidos.17 Sin embargo, aunque la estructura determina la función, predecir una nueva actividad enzimática basándose únicamente en la estructura de una proteína es muy difícil, y un problema aún no resuelto.
Especificidad
Las enzimas suelen ser muy específicas tanto del tipo de reacción que catalizan como del sustrato involucrado en la reacción. La forma, la carga y las características hidrofílicas/hidrofóbicas de las enzimas y los sustratos son los responsables de dicha especificidad. Las enzimas también pueden mostrar un elevado grado de estereoespecificidad, regioselectividad y quimioselectividad.
Algunas de estas enzimas que muestran una elevada especificidad y precisión en su actividad son aquellas involucrados en la replicación y expresión del genoma. Estas enzimas tienen eficientes sistemas de comprobación y corrección de errores, como en el caso de la ADN polimerasa, que cataliza una reacción de replicación en un primer paso, para comprobar posteriormente si el producto obtenido es el correcto.21 Este proceso, que tiene lugar en dos pasos, da como resultado una media de tasa de error increíblemente baja, en torno a 1 error cada 100 millones de reacciones en determinadas polimerasas de mamíferos. Este tipo de mecanismos de comprobación también han sido observados en la ARN polimerasa,23 en la ARNt aminoacil sintetasa y en la actividad de selección de los aminoacil-tRNAs.
Aquellas enzimas que producen metabolitos secundarios son denominadas promiscuas, ya que pueden actuar sobre una gran variedad de sustratos. Por ello, se ha sugerido que esta amplia especificidad de sustrato podría ser clave en la evolución y diseño de nuevas rutas biocinéticas.
Casi todas las enzimas son mucho más grandes que los sustratos sobre los que actúan, y solo una pequeña parte de la enzima (alrededor de 3 a 4 aminoácidos) está directamente involucrada en la catálisis. La región que contiene estos residuos encargados de catalizar la reacción es denominada centro activo. Las enzimas también pueden contener sitios con la capacidad de unir cofactores, necesarios a veces en el proceso de catálisis, o de unir pequeñas moléculas, como los sustratos o productos (directos o indirectos) de la reacción catalizada. Estas uniones de la enzima con sus propios sustratos o productos pueden incrementar o disminuir la actividad enzimática, dando lugar así a una regulación por retroalimentación positiva o negativa, según el caso.
Al igual que las demás proteínas, las enzimas se componen de una cadena lineal de aminoácidos que se pliegan durante el proceso de traducción para dar lugar a una estructura terciaria tridimensional de la enzima, susceptible de presentar actividad. Cada secuencia de aminoácidos es única y por tanto da lugar a una estructura única, con propiedades únicas. En ocasiones, proteínas individuales pueden unirse a otras proteínas para formar complejos, en lo que se denomina estructura cuaternaria de las proteínas.
La mayoría de las enzimas, al igual que el resto de las proteínas, pueden ser desnaturalizadas si se ven sometidas a agentes desnaturalizantes como el calor, los pHs extremos o ciertos compuestos como el SDS. Estos agentes destruyen la estructura terciaria de las proteínas de forma reversible o irreversible, dependiendo de la enzima y de la condición.
Modelo de la "llave-cerradura"
Las enzimas son muy específicas, como sugirió Emil Fisher en 1894. Con base a sus resultados dedujo que ambas moléculas, enzima y sustrato, poseen complementariedad geométrica, es decir, sus estructuras encajan exactamente una en la otra, por lo que ha sido denominado como modelo de la "llave-cerradura", refiriéndose a la enzima como a una especie de cerradura y al sustrato como a una llave que encaja de forma perfecta en dicha cerradura. Sin embargo, si bien este modelo explica la especificidad de las enzimas, falla al intentar explicar la estabilización del estado de transición que logran adquirir las enzimas.
Modelo del encaje inducido
En 1958 Daniel Koshland sugiere una modificación al modelo de la llave-cerradura: las enzimas son estructuras bastante flexibles y así el sitio activo podría cambiar su conformación estructural por la interacción con el sustrato. Como resultado de ello, la cadena aminoacídica que compone el sitio activo es moldeada en posiciones precisas, lo que permite a la enzima llevar a cabo su función catalítica. En algunos casos, como en las glicosidasas, el sustrato cambia ligeramente de forma para entrar en el sitio activo. El sitio activo continua dicho cambio hasta que el sustrato está completamente unido, momento en el cual queda determinada la forma y la carga final.
Mecanismos
Las enzimas pueden actuar de diversas formas, aunque, como se verá a continuación, siempre dando lugar a una disminución del valor de ΔG‡:31
Reducción de la energía de activación mediante la creación de un ambiente en el cual el estado de transición es estabilizado (por ejemplo, forzando la forma de un sustrato: la enzima produce un cambio de conformación del sustrato unido el cual pasa a un estado de transición, de modo que ve reducida la cantidad de energía que precisa para completar la transición).
Reduciendo la energía del estado de transición, sin afectar la forma del sustrato, mediante la creación de un ambiente con una distribución de carga óptima para que se genere dicho estado de transición.
Proporcionando una ruta alternativa. Por ejemplo, reaccionando temporalmente con el sustrato para formar
...