ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Medidas de Tendencia central y de Posición


Enviado por   •  2 de Marzo de 2022  •  Síntesis  •  6.973 Palabras (28 Páginas)  •  366 Visitas

Página 1 de 28

Unidad académica No. 3

Medidas de Tendencia central y de Posición

Objetivos:

  1. Conocer, calcular e interpretar las distintas medidas de Tendencia Central y de Posición.
  2. Explicar Las ventaja y desventajas de cada una de las medidas de Tendencia Central y de Posición.

Contenido

Introducción.

  1. La media aritmética (promedio).
  2. La media ponderada.
  3. La media geométrica.
  4. La mediana.
  5. La Moda o Modo
  6. Los cuartiles.
  7. Los percentiles
  8. Diagrama de Caja y bigotes (Box Plot)  
  9. Ejercicios

De cada una de estas medidas se estudiará su definición, su fórmula de cálculo, sus propiedades y sus aplicaciones.    

Bibliografía: 

David Anderson, Dennis Sweeney, Thomas Williams. Estadística para Administración y Economía, Capítulo 2.

Sheldon M. Ross. Introducción a la Estadística, Capítulo 2

Introducción:

El análisis estadístico de datos se realiza bajo los siguientes criterios:

  • Tendencia central

  • Variación o dispersión

  • Forma

Definición de Medida de Tendencia central:

La característica más estudiada en un conjunto de datos es el centro o punto alrededor del cual tienden a acumularse las observaciones o datos. Una medida de tendencia central es un número usado para resumir un conjunto de datos Numéricos.

Las medidas de tendencia central se agrupan en dos categorías:

  • Medidas de tendencia central propiamente dichas, que se caracterizan por que poseen características de tipo matemático. En esta categoría se clasifican: La media aritmética o promedio, la media o promedio ponderados, la media geométrica y la media armónica.

  • Medidas de posición que se deducen mediante un razonamiento de tipo geométrico. En este grupo se clasifican: La mediana, la moda o modo, los cuartiles y los percentiles.

 

3.1        La media aritmética o promedio

La media aritmética o promedio, es igual a la suma de los valores del grupo de datos dividida entre el número de valores. Se representa mediante el símbolo equis barra o M [X] y la fórmula de cálculo es:

Si [pic 1]es una variable que toma [pic 2] valores: [pic 3] en general [pic 4] , entonces, la media aritmética o promedio representada mediante el símbolo [pic 5]o [pic 6]equis barra es igual a:

                      M [X] = [pic 7]  =  [pic 8]

En esta fórmula, [pic 9] representa el total de la variable y [pic 10]el tamaño de la muestra o número de casos en estudio.

En obvio que el Total de la variable es igual a:

                                                    [pic 11]= [pic 12]

Ejemplo 1:

Suponga que los siguientes datos (expresados en segundos) representan el tiempo de duración de seis mensajes comerciales de la televisión Colombia:

55        51        50        48        52        50

Calcule la media aritmética o promedio de estos tiempos de duración.

En este ejemplo con [pic 13]comerciales representamos el número de casos, con [pic 14]representamos el tiempo de duración (en segundos) de los comerciales en general, y con [pic 15] el tiempo de duración de cada comercial, así: [pic 16] [pic 17] [pic 18] [pic 19] [pic 20] [pic 21]. El promedio del tiempo de duración será:

 [pic 22]=[pic 23]segundos.

Observaciones:

  • Todo conjunto de datos cuantitativos tiene una media.
  • Al calcular la media se incluyen todos los valores de la muestra.
  • Un conjunto de datos tiene solo una media. Esta es única.
  • La media aritmética es un indicador muy útil para comparar dos o más muestras o poblaciones. Por ejemplo, puede emplearse para comparar el desempeño en la producción de los operarios del turno del día de una industria, con el desempeño de los del turno de la noche.

Ejemplo 2:

Dos academias de inglés ofrecen clases para preparar el examen TOEFEL. Para medir la efectividad de las dos academias, se toman muestras al azar de estudiantes y se observó la puntuación en el examen TOEFEL. Los resultados son los siguientes:      

Estudiante

1

2

3

4

5

6

7

8

9

10

Academia A

79

74

90

67

85

74

69

87

81

64

Academia B

72

71

81

64

63

79

74

72

  1. Calcule el promedio de las puntuaciones para cada academia.
  2. Con base en estos resultados, ¿Cuál de las dos es más efectiva para preparar el TOEFEL? Explique su respuesta.

Solución:

  1. [pic 24]=[pic 25] puntos

[pic 26]=[pic 27] puntos

  1. Estos resultados indican que la academia [pic 28]es más efectiva que la academia [pic 29]para preparar el examen TOEFEL.

Ejemplo 3:

Se diseña un puente para soportar una carga máxima de 55.000 libras. Si en un momento dado se le carga con 15 vehículos que tiene un peso promedio (una media aritmética) de 3.000 libras, ¿esta sobre cargado el puente?  

Solución:

Sean [pic 30]vehículos y [pic 31]libras, el peso promedio por vehículo. Entonces, el peso Total de los [pic 32]vehículos será [pic 33]libras. En consecuencia, el puente no está sobrecargado.

...

Descargar como (para miembros actualizados) txt (23 Kb) pdf (2 Mb) docx (3 Mb)
Leer 27 páginas más »
Disponible sólo en Clubensayos.com