ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Chi Cuadrado


Enviado por   •  13 de Febrero de 2015  •  3.081 Palabras (13 Páginas)  •  436 Visitas

Página 1 de 13

Y CÓMO SE CALCULA LA DISTRIBUCIÓN CHI CUADRADO?

ANTECEDENTES HISTÓRICOS DE LA DISTRIBUCIÓN CHI CUADRADO:

El matemático Karl Pearson (1857−1936), advirtió que cuando un científico realiza un experimento de resultados aleatorios, generalmente tiene en mente como referente un «modelo teórico ideal» que de antemano establece cómo debería ser el comportamiento y cuáles deberían ser los resultados estadísticos esperados del experimento. Sin embargo, en el mundo real es muy normal que los resultados empíricos obtenidos dentro de Muestras Estadísticas sobre la realización de un experimento aleatorio no coincidan plenamente con los resultados teóricos esperados. En muchos casos es normal que ocurran grandísimas fluctuaciones en los resultados observados en el experimento aleatorio, y aún así es posible seguir afirmando que esos resultados fluctuantes todavía están ocurriendo dentro de los límites previstos por el modelo teórico ideal. Justamente, una gran dificultad a la que se enfrentaron los primeros científicos de la Modernidad fue cómo hallar una fórmula matemática para determinar con exactitud que las fluctuaciones o variaciones observadas en los resultados de un experimento eransuficientemente «significativas» como para permitir concluir que esos resultados ya no respondían a las expectativas del modelo teórico.

Por ese motivo Karl Pearson hacia 1900 propuso uno de los primeros Tests Estadísticos que desde la óptica de las distribuciones de la probabilidad sirve para calcular si los resultados estadísticos de un experimento se alejan significativamente o no de los resultados esperados del modelo teórico, test que actualmente es conocido como el «Test Chi Cuadrado». Luego otros importantes matemáticos han propuesto la axiomatización de diversas funciones matemáticas o estadísticas que permiten definir y calcular los límites ideales a partir de los cuales se puede afirmar con gran certeza que los resultados observados en un experimento aleatorio definitivamente ya no responden a las expectativas teóricas del modelo ideal, es decir, permiten concluir que realmente son muy significativas las disparidades existentes entre los resultados observados y los resultados esperados. Algunas de las más importantes funciones estadísticas empleadas para ese propósito son la prueba Fisher, la prueba T-Student, la prueba Z, el test Wishart, la prueba McNemar, la prueba Q de Cochran, los tests de Bondad de Ajuste, etc.

A continuación tratare sobre la Distribución Chi-Cuadrado de la probabilidad y su relación con el Test Chi-Cuadrado, recalcando su aplicación en los denominados «Contrastes de Significación» que se pueden realizar entre los resultados teóricos esperados y los resultados empíricos observados de un experimento.

COMPRENDIENDO EL MODELO IDEAL DE LA DISTRIBUCIÓN CHI CUADRADO:

La denominada «Distribución Chi Cuadrado» (que usualmente se escribe y se lee como: Ji Cuadrado), es una distribución cuadrática de la probabilidad que utiliza básicamente variables aleatorias continuas. La Distribución Chi Cuadrado de la probabilidad se denota mediante la letra griega minúscula ji elevada al cuadrado (χ2), y consiste en establecer un espacio continuo delimitado por la suma de los cuadrados de n variables aleatorias que son independientes entre sí, espacio dentro del cual la variable X puede asumir cualquiera de los infinitos valores que lo conforman, y por tanto para establecer el valor aproximado de una variable X dentro de ese espacio se procede a incluir una estimación de sus posibles límites que están dados por los distintos «Grados de Libertad» que pueden existir entre las variables aleatorias analizadas que dan origen al referido espacio. En otras palabras, la Distribución Chi Cuadrado en un delimitado espacio conjuga un determinado número de variables aleatorias independientes entre sí, con unos valores de probabilidad ubicados entre 1 y 0 que son atribuibles a esas variables, y con unos límites de la probabilidad para el verdadero valor de X delimitados por los Grados de Libertad atribuibles a las variables aleatorias analizadas.

La Distribución Chi Cuadrado permite calcular la probabilidad existente para que una variable X, que tiene un determinado Grado de Libertad frente a otras variables del mismo conjunto, permanezca dentro de unos «límites ideales» previstos para X cuando tiene ese específico Grado de Libertad o independencia. En otras palabras, la Distribución Chi Cuadrado suministra un modelo ideal sobre los límites probables que deberían regir las fluctuaciones en la aparición de un determinado valor aleatorio X dependiendo del Grado de Libertad que tiene ese valor frente a otras variables similares dentro de un conjunto de datos analizados. La fórmula matemática para calcular la probabilidad de que una variable X permanezca dentro del límite ideal correspondiente al respectivo Grado de Libertad es la siguiente:

χ2k (X) = Xk / 2 – 1 e –X / 2

2k /2 Γ(k / 2)

En esta ecuación la letra k que aparece como un subíndice de la expresión χ2 indica el Grado de Libertad que se toma como límite para calcular la probabilidad de la variable aleatoria X. Esta ecuación para ser despejada requiere el uso de la compleja Función Gamma (representada por la letra griega mayúscula gamma: Γ), y por tanto generalmente para solucionar esta ecuación se emplean métodos basados en la consulta de tablas o en el uso de algoritmos para ordenador que permiten obtener los valores de probabilidad respectivos.

EXPLICACIÓN DE LOS GRADOS DE LIBERTAD USADOS EN LA DISTRIBUCIÓN CHI CUADRADO:

Dentro de la Distribución Ji Cuadrado los denominados «Grados de Libertad» atribuibles a un conjunto de variables equivalen al número de datos independientes entre sí existentes dentro de ese conjunto que es necesario conocer previamente para poder estimar el valor de cualquier otro dato independiente del mismo grupo. Por ejemplo, si se afirma que en un cesto hay un conjunto de 10 manzanas, conformado por 2 clases independientes de manzanas, pues algunas de esas 10 manzanas son de color rojo y otras son de color verde, entonces en tal caso basta con saber que en el cesto hay 4 manzanas rojas para poder calcular inmediatamente que las restantes son 6 manzanas de color verde, es decir, en este caso hay 2 clases de datos independientes entre sí (rojas y verdes), pero para poder conocer el valor de una clase de esos dos datos es siempre necesario conocer previamente el valor de la otra clase de datos, motivo por el cual se concluye que el Grado de Libertad o el grado de independencia existente entre las dos clases de datos tiene un valor de uno (1).

En otro ejemplo, si se afirma que en una sala hay un conjunto de 30 personas, conformado por 3 clases de razas independientes entre sí, pues algunas de

...

Descargar como (para miembros actualizados) txt (19 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com