Las Matematicas
Enviado por MARIELCR1603 • 5 de Abril de 2015 • 3.950 Palabras (16 Páginas) • 164 Visitas
LAS MATEMÁTICAS
Las matemáticas, como cualquier otro avance en la historia de la humanidad, parte de las necesidades del ser humano de contar, medir y determinar la forma de todo aquello que le rodeaba. Pero la realidad es que, determinar un origen concreto para la aparición de cada uno de los conceptos que sientan las bases de las matemáticas es bastante más complejo que establecer el origen de la rueda, o el origen de la cartografía.
Para comenzar, hay que tener en cuenta que recientes estudios en la capacidad cognitiva de los animales han determinado que los números, mediciones y formas no son conceptos únicos del ser humano. Con los datos de estos estudios, se puede presuponer que los conceptos matemáticos aparecen en las sociedades cazadoras-recolectoras, aunque no en todas de la misma forma.
1. HISTORIA
¿Dónde o cómo nacen las matemáticas? Es toda una discusión.
a) Influjo empírico y práctico en los orígenes de las matemáticas: Podemos decir que las matemáticas en las civilizaciones primitivas, en gran medida, refieren al cálculo de terrenos, a la decoración en cerámica, al comercio más trivial, a los modelos y diseños en la ropa o al recuento del correr del tiempo en la vida cotidiana. Esto no debe, sin embargo, verse con malos ojos. Porque se trata de un sentido íntimo de las matemáticas, imbricadas en la práctica humana, inmersas interactivamente en su entorno. La matemática Oriental se originó como una ciencia práctica para facilitar el cómputo del calendario, la administración de las cosechas, la organización de trabajos públicos, y la recolecta de impuestos. El énfasis inicial estaba naturalmente en la aritmética práctica y la medición.
b) Egipcios y Babilonios: estas son dos de las civilizaciones relevantes para la historia de las ciencias y las matemáticas, importantes nutrientes de las matemáticas griegas. La historia de las matemáticas en Egipto no trascendió los límites prácticos y la evidencia empírica en sus construcciones teóricas. Las principales referencias que se tiene en relación con las matemáticas egipcias son documentos escritos sobre papiro, uno de los papiros sobrevivientes es el llamado papiro de Moscú en que se encuentran 87 problemas y sus soluciones.
Hay alrededor de 500 000 tablillas de arcilla que constituyen las fuentes principales de la cultura babilónica, y entre ellas unas 500 son de interés para las matemáticas, dos de las características más importantes de su sistema numérico fueron la base 60 y la notación posicional. Se sabe también que los babilonios podían expresar cuadrados, cubos, raíces cuadradas, cúbicas; eso sí: a través de tablas. En efecto, por medio de las tablas podían resolver ecuaciones de la forma “ax3 + bx2 = c”.
c) El mundo griego presocrático: Se reconoce como las contribuciones más importantes del periodo clásico los Elementos de Euclides y las Secciones Cónicas de Apolonio. Estas obras fueron escritas de una manera sistemática y deductiva, y han sido asumidas como paradigma de las matemáticas y su construcción. "Homero fue un producto perfecto de Jonia, o sea de una parte del Asia menor helénica y de las islas adyacentes. En cierta época, durante el siglo Vl, hacia al final, los poemas helénicos adquirieron su forma actual. En éste empezaron también la ciencia, la filosofía y las matemáticas griegas. Al propio tiempo ocurrieron acontecimientos de importancia fundamental en otras partes del mundo. Confucio, Buda y Zoroastro (la fecha de Zoroastro es muy hipotética, algunos la sitúan en 1 000 a. C.), si existieron, pertenecen probablemente a dicho siglo. A mediados de él, el Imperio persa fue establecido por Ciro; hacia su final, las ciudades griegas de Jonia, a las que los persas habían concedido una autonomía limitada, iniciaron una rebelión, frustrada, que fue dominada por Darío, y los mejores de sus hombres fueron exiliados. Se desarrolló en estos territorios una escuela de pensamiento cuya principal característica fue la búsqueda de una explicación naturalista a varios asuntos del mundo circundante. La idea central era que el mundo estaba compuesto por unas pocas sustancias o combinaciones de éstas. Podemos pensar que sus ideas fueron muy primitivas, sin embargo, ¿acaso la química moderna no se basa en algo semejante? Asunto de perspectiva. Fueron parte de esta "escuela'' Thales (c. 640 - c. 546 a.C.), Anaximandro (c. 610 - c. 547 a.C.), Anaxímenes (c. 550 - 480 a.C.), Anaxágoras (c. 500 - c. 428 a.C), y Pitágoras (c. 585 - c. 500 a.C). El fundador fue Thales de Mileto. Anaximandro y Anaxímenes fueron sus discípulos. Pitágoras que formó su propia escuela al sur de la península itálica recibió formación matemática de parte de Thales directamente.
d) Atenas: En las guerras contra los persas, las ciudades griegas dispersadas en el Mediterráneo encontraron en Atenas una ciudad dirigente política y culturalmente. Durante unos 150 años fue un centro formidable para la expansión de la cultura y el pensamiento. Al acabar las guerras, Pericles gobernó durante más de 30 años (c. 466 - 428 a.C.), con una voluntad que nutrió la literatura, la filosofía, las ciencias y las artes. Es la ciudad asociada a los nombres de Sócrates, Platón, Aristóteles, Epicuro. También del arquitecto y escultor Fidias. Allí estaban Esquilo, Sófocles, Eurípides y Aristófanes. No nos podemos olvidar de Herodoto, el gran historiador. ¿Y en las matemáticas? Hipócrates de Quíos, Eudoxo, Anaxágoras. Eudoxo fue el principal matemático de la Academia de Platón. No sólo se dedicó a las matemáticas sino también a la ciencia en general. Algunos piensan que la estimación de Aristóteles de que la circunferencia de la Tierra era unos 400 000 estadios (40 000 millas) se debía a Eudoxo. Se afirma que fue el mejor de los matemáticos del periodo clásico y sólo superado por Arquímedes en toda la Antigüedad. Su contribución más importante a las matemáticas fue la llamada teoría de las proporciones. El objetivo de esta teoría fue evitar el uso de los irracionales como números sin dejar de hacer geometría. Lo que hizo fue, en esencia, introducir la noción de magnitud, que no era un número pero servía para tratar ángulos, segmentos, áreas, volúmenes, que variaban de una manera continua. Mientras que los números eran discretos, se podía pasar de uno a otro, las magnitudes eran continuas. Las magnitudes, por definición, no podían tener valores cuantitativos.
Aristóteles establece una diferencia cualitativa entre el punto y la recta, que refiere directamente a la distinción entre lo discreto y lo continuo. Lo primero apunta a la aritmética y lo segundo a la geometría. Es interesante que Aristóteles considera que la aritmética es previa a la geometría y, además,
...