Portafolios
Enviado por elvialop • 4 de Julio de 2013 • 3.224 Palabras (13 Páginas) • 227 Visitas
INTRODUCCIÓN
ESTADISTICA. La estadística es una ciencia que estudia la recolección, análisis e interpretación de datos, ya sea para ayudar en la resolución de la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo estadística es más que eso, en otras palabras es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica. En este modulo se mirara la materia de estadística, relacionada con la licenciatura de los alumnos. Será mirado de tal manera que se encuentre relación en la vida cotidiana y profesional.
LA ESTADÍSTICA:
Es la rama de las Matemáticas que se va a encargar de Recopilar, Organizar, y Procesar datos con el fin de inferir las características de la población objetivo.
LOS TIPOS DE ESTADÍSTICA.
Descriptiva: Es la técnica que se va a encargar de la recopilación, presentación, tratamiento y análisis de los datos, con el objeto de resumir, describir las características de un conjunto de datos y por lo general toman forma de tablas y gráficas.
Inferencia Estadística: Técnica mediante la cual se sacan conclusiones o generalizaciones acerca de parámetros de una población basándose en el estadígrafo o estadígrafos de una muestra de población.
OBJETIVO DE LA ESTADÍSTICA: Es la obtención de conclusiones basadas en los datos experimentales.
OBJETIVO DE LA ESTADÍSTICA DESCRIPTIVA: Describir las características principales de los datos reunidos.
Varianza y desviación estándar
La desviación sólo significa qué tan lejos de lo normal
Desviación estándar
La desviación estándar (σ) mide cuánto se separan los datos.
La fórmula es fácil: es la raíz cuadrada de la varianza. Así que, "¿qué es la varianza?"
Varianza
la varianza (que es el cuadrado de la desviación estándar: σ2) se define así:
Es la media de las diferencias con la media elevadas al cuadrado.
En otras palabras, sigue estos pasos:
1. Calcula la media (el promedio de los números)
2. Ahora, por cada número resta la media y eleva el resultado al cuadrado (la diferencia elevada al cuadrado).
3. Ahora calcula la media de esas diferencias al cuadrado. (¿Por qué al cuadrado?)
Ejemplo
Tú y tus amigos midieron las alturas de los perros (en milímetros):
Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm.
Calcula la media, la varianza y la desviación estándar.
Respuesta:
Media = 600 + 470 + 170 + 430 + 300 = 1970 = 394
5 5
así que la altura media es 394 mm. Vamos a dibujar esto en el gráfico:
Ahora calculamos la diferencia de cada altura con la media:
Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media:
Varianza: σ2 = 2062 + 762 + (-224)2 + 362 + (-94)2 = 108,520 = 21,704
5 5
Así que la varianza es 21,704.
Y la desviación estándar es la raíz de la varianza, así que:
Desviación estándar: σ = √21,704 = 147
y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media:
Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
Los Rottweilers son perros grandes. Y los Dachsunds son un poco menudos... ¡pero que no se enteren!
*Nota: ¿por qué al cuadrado?
Elevar cada diferencia al cuadrado hace que todos los números sean positivos (para evitar que los números negativos reduzcan la varianza)
Y también hacen que las diferencias grandes se destaquen. Por ejemplo 1002=10,000 es mucho más grande que 502=2,500.
Pero elevarlas al cuadrado hace que la respuesta sea muy grande, así que lo deshacemos (con la raíz cuadrada) y así la desviación estándar es mucho más útil.
Distribuciones discretas: Bernoulli.
La distribución de Bernoulli es el modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:
Ejemplo: Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); p robabilidad de ser admitido en una universidad (o te admiten o no te admiten); p robabilidad de acertar una quiniela (o aciertas o no aciertas)
Al haber únicamente dos soluciones se trata de sucesos complementarios:
A la probabilidad de éxito se le denomina "p"
A la probabilidad de fracaso se le denomina "q"
Verificándose que:
p + q = 1
Veamos los ejemplos antes mencionados:
Ejemplo 1: Probabilidad de salir cara al lanzar una moneda al aire:
Probabilidad de que salga cara: p = 0,5
Probabilidad de que no salga cara: q = 0,5
p + q = 0,5 + 0,5 = 1
Ejemplo 2: Probabilidad de ser admitido en la universidad:
Probabilidad de ser admitido: p = 0,25
Probabilidad de no ser admitido: q = 0,75
p + q = 0,25 + 0,75 = 1
Ejemplo 3: Probabilidad de acertar una quiniela:
Probabilidad de acertar: p = 0,00001
Probabilidad de no acertar: q = 0,99999
p + q = 0,00001 + 0,99999 = 1
Distribuciones discretas: Binomial.
La distribución binomial parte de la distribución de Bernouilli:
La distribución de Bernouilli se aplica cuando se realiza una sola vez un experimento que tiene únicamente dos posibles resultados (éxito o fracaso), por lo que la variable sólo puede tomar dos valores: el 1 y el 0
La distribución binomial se aplica cuando se realizan un número"n" de veces el experimento de Bernouilli, siendo cada ensayo independiente del anterior. La variable puede tomar valores entre:
0: si todos los experimentos han sido fracaso
n: si todos los experimentos han sido éxitos
Ejemplo: se tira una moneda 10 veces: ¿cuantas caras salen? Si no ha salido ninguna la variable toma el valor 0; si han salido dos caras la variable toma el valor 2; si todas han sido cara la variable toma el valor 10
La distribución de probabilidad de este tipo de distribución sigue el siguiente modelo:
Ejemplo
...