ECUACIONES DIFERENCIALES/ANIQUILADOR/
Enviado por reichel_azul93 • 16 de Octubre de 2013 • 864 Palabras (4 Páginas) • 416 Visitas
1.y´´-2y^'=sinx y_p=2/5 cosx-1/5 sinx
(D^2-2D)y=0
m^2-2m
m(m-2) m_(1=) 0 m_2=2
y_c=C_1+C_2 e^2x
(D^2+1) sinx=0
D(D-2)(D^2+1)=(D^2+1) sinx
m_(1=) 0 m_2=2 m_3,4=±i
y=C_1+C_2 e^2x+C_3 cosx+C_4 sinx
y_p=A cosx+B sinx
〖y´〗_p=-A sinx+B cosx
〖y´´〗_p=-A cosx-B sinx
-A cosx-B sinx-2(-A sinx+B cosx )=sinx
-A cosx-B sinx+2Asinx-2B cosx=sinx
(-B+2A) sinx=sinx
(-A-2B) cosx=0
-B+2A=1
-2B-A=0
2B-42A=-2 -B+2(2/5)=1
-2B-A=0 -B+4/5=1
-5A=-2 -B=1-4/5
A=2/5 B=-1/5
y_p=2/5 cosx-1/5 sinx
2. y^'''+y^'=cosx y_p=-1/2 xcos x
(D^3+D)y=0
m^3+m
m(m^2+1) m_(1=) 0 m_2,3=±i
y_c=C_1+C_2 cos〖x+〗 C_3 sen x
(D^2+1) cosx=0
D(D^2+1)(D^3+1)=(D^3+1) cosx
m_(1=) 0 m_2,3,4,5=±i
y=C_1+C_2 cosx+C_3 senx+C_4 x cosx+C_5 x senx
y_p=Ax cosx+Bx senx
〖y´〗_p=A[cosx-xsen x]+B[x cos〖x+sen x]〗
〖y´´〗_p=A[-sen x-x cos〖x+sen x]〗+B[cosx-xsen x+cosx]
〖y'''〗_p=A[-cos x-cos〖x+x senx-cosx]〗+B[sen x-xcos x+sen x-sen x]
A[-cos x-cos〖x+x senx-xcosx]〗+B[sen x-xcos x+sen x-sen x]+Axcos x+Bx senx = cosx
(B) senx=0
(-2A) cosx=cosx
(2B)x senx=0
(A-A) xcosx=0
-2A=1
A=-1/2
2B=0
B=0
A=-1/2 B=0
y_p=-1/2 xcosx
5. y´´´´-3y´´+2y´=xe^2x y_p=1/4 x^2 e^2x-3/4 xe^2x
(D^3-3D^2+2D)y=0
m^3-3m^2+2m
m(m^2-3m+2)
(m-2)(m-1) m_1=0 m_2=2 m_3=1
y_c=C_1+C_2 e^2x+C_3 e^x
〖(D-2)〗^2 xe^2x
(D^2-4D+4) xe^2x=0
(D^3-3D^2+2D) 〖(D-2)〗^2=〖(D-2)〗^2 xe^2x
m_1=0 m_2=2 m_3=1 m_4,5=2
y=C_1+C_2 e^2x+C_3 e^x+C_4 〖xe〗^2x+C_5 x^2 e^2x
y_p=A〖xe〗^2x+Bx^2
...