ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Logica Matematica


Enviado por   •  20 de Octubre de 2014  •  2.332 Palabras (10 Páginas)  •  301 Visitas

Página 1 de 10

Concepto de lógica matemática [editar]

La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican conceptos intuitivos de objetos matemáticos como conjuntos, números, demostraciones y computación. La lógica estudia las reglas de deducción formales, las capacidades expresivas de los diferentes lenguajes formales y las propiedades metalógicas de los mismos.

En un nivel elemental, la lógica proporciona reglas y técnicas para determinar si es o no válido un argumento dado dentro de un determinado sistema formal. En un nivel avanzado, la lógica matemática se ocupa de la posibilidad de axiomatizar las teorías matemáticas, de clasificar su capacidad expresiva, y desarrollar métodos computacionales útiles en sistemas formales. La teoría de la demostración y la matemática inversa son dos de los razonamientos más recientes de la lógica matemática abstracta. Debe señalarse que la lógica matemática se ocupa de sistemas formales que pueden no ser equivalentes en todos sus aspectos, por lo que la lógica matemática no es método de descubrir verdades del mundo físico real, sino sólo una fuente posible de modelos lógicos aplicables a teorías científicas, muy especialmente a la matemática convencional.

La lógica matemática no se encarga por otra parte del concepto de razonamiento humano general o del proceso creativo de construcción de demostraciones matemáticas mediante argumentos rigurosos pero hechos usando lenguaje informal con algunos signos o diagramas, sino sólo de demostraciones y razonamientos que pueden ser completamente formalizados en todos sus aspectos.

Sistemas lógicos [editar]

La lógica matemática se interesa por tres tipos de aspectos de los sistemas lógicos:

• La sintaxis de los lenguajes formales, es decir, las reglas de formación de símbolos interpretables construidos a partir de un determinado alfabeto, y las reglas de inferencia. En concreto el conjunto de teoremas deducibles de un conjunto de axiomas.

• La semántica de los lenguajes formales, es decir, los significados atribuibles a un conjunto de signos, así como el valor de verdad atribuible a algunas de las proposiciones. En general las expresiones de un sistema formal interpretadas en un modelo son ciertas o falsas, por lo que un conjunto de proposiciones que admite un modelo es siempre consistente.

• Los aspectos metalógicos de las lenguas formales, como por ejemplo la completitud, la consistencia, la compacidad o la existencia de modelos de cierto tipo, etc.

Los diferentes tipos de sistemas lógicos pueden ser clasificados en:

• Lógica proposicional (Lógica de orden cero): En ella existe símbolos para variables proposicionales (que pueden ser interpretados informalmente como enunciados que puden ser ciertos o falsos) además de símbolos para diversas conectivas. Estas conectivas permiten formar expresiones complejas a partir de variables proposicionales simples. Un sistema lógico puede incluir diversos tipos de conectivas, entre ellos, la lógica clásica suele hacer uso de los siguientes:

¬ se lee “no”

∧ se lee “y”

∨ se lee “o”

→ se lee “…implica…” o “si,…entonces…,”

↔ se lee “…equivalente con…” o "…si, sólo sí…"

Dentro de la lógica proposicional pueden distinguirse varios tipos, por ejemplo restringiendo las posibilidades de interpretación semántica se obtiene la lógica intuicionista y ampliando la complejidad de las interpretaciones semánticas se obtienen las lógicas modales

Teoría de conjuntos

Hipótesis del continuo. La colección de todos los conjuntos de números naturales P(N) tiene la llamada potencia del continuo: tantos elementos como (por ejemplo) puntos en una recta. Su estudio es uno de los principales problemas en la teoría de conjuntos.

La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1

Sin embargo, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas, ...; y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.

Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica matemática.

El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana de conjuntos propició los trabajos de Bertrand Russell, Ernst Zermelo, Abraham Fraenkel y otros a principios del siglo XX.

Teoría de Conjuntos

NOCION INTUITIVA DE CONJUNTO

Un conjunto es la reunión en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo.

Si a es un elemento del conjunto A se denota con la relación de pertenencia a  A.

En caso contrario, si a no es un elemento de A se denota a A.

Ejemplos de conjuntos:

o  : el conjunto vacío, que carece de elementos.

o N: el conjunto de los números naturales.

o Z: el conjunto de los números enteros.

o Q : el conjunto de los números racionales.

o R: el conjunto de los números reales.

o C: el conjunto de los números complejos.

Se puede definir un conjunto:

o por extensión, enumerando todos y cada uno de sus elementos.

o por comprensión, diciendo cuál es la propiedad que los caracteriza.

Un conjunto se suele denotar encerrando entre llaves a sus elementos, si se define por extensión,

o su propiedad característica, si se define por comprensión. Por ejemplo:

o A := {1,2,3, ... ,n}

o B := {p Z | p es par}

• Se dice que A está contenido en B (también que A es un subconjunto de B o que A

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com