ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Derivada De Una Función Real.


Enviado por   •  29 de Abril de 2014  •  1.779 Palabras (8 Páginas)  •  409 Visitas

Página 1 de 8

 Derivada de una función real

En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.

El valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.

La derivada de una función f en un punto x se denota como f′(x). La función cuyo valor en cada punto x es esta derivada es la llamada función derivada de f, denotada por f′. El proceso de encontrar la derivada de una función se denomina diferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo infinitesimal. Concretamente, el que trata de asuntos vinculados con la derivada se denomina cálculo diferencial.

La derivada de la función en el punto marcado equivale a la pendiente de la recta tangente (la gráfica de la función está dibujada en rojo; la tangente a la curva está dibujada en verde).

 Variación e incremento en una variable

La tasa de variación o incremento de una función es el aumento o disminución que experimenta una función al pasar la variable independiente de un valor a otro.

TV[x1,x2]=f(x1)-f(x2)

De más utilidad resulta calcular la llamada tasa de variación media, que nos indica la variación relativa de la función respecto a la variable independiente:

Crecimiento y decrecimiento

Una característica de las funciones que se puede visualizar fácilmente en las gráficas es la monotonía. Cuando al aumentar el valor de x aumenta el valor de y=f(x), la gráfica "asciende" y se dice que la función es creciente. Si por el contrario al aumentar x disminuye y, la gráfica "desciende", y la función decrece.

Una función es creciente en un intervalo, cuando dados dos puntos cualesquiera del mismo

• Si x1<x2 entonces f(x1)<f(x2)

Y será decreciente

• Si x1<x2 entonces f(x1)>f(x2)

En estadística, cuando se desea hacer referencia a la relación entre el tamaño de la media y la variabilidad de la variable, se utiliza el coeficiente de variación.

Su fórmula expresa la desviación estándar como porcentaje de la media aritmética, mostrando una mejor interpretación porcentual del grado de variabilidad que la desviación típica o estándar. Por otro lado presenta problemas ya que a diferencia de la desviación típica este coeficiente es variable ante cambios de origen. Por ello es importante que todos los valores sean positivos y su media dé, por tanto, un valor positivo. A mayor valor del coeficiente de variación mayor heterogeneidad de los valores de la variable; y a menor C.V., mayor homogeneidad en los valores de la variable. Suele representarse por medio de las siglas C.V.

Exigimos que: \bar{x} > 0

Se calcula:

C_V = \frac{\sigma}{|\bar{x}|}

Donde \sigma es la desviación típica. Se puede dar en tanto por ciento calculando:

C_V = \frac{\sigma}{|\bar{x}|} \cdot 100

Derivada de una función

Considerando la función f definida en el intervalo abierto I y un punto a fijo en I, se tiene que la derivada de la función f en el punto a\, se define como sigue:

f'(a)=\lim_{h\rightarrow0} \frac{f(a + h) - f(a)}{h},

si este límite existe, de lo contrario, f', la derivada, no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniforme acelerado en cinemática.

Aunque podrían calcularse todas las derivadas empleando la definición de derivada como un límite, existen reglas bien establecidas, conocidas como teoremas para el cálculo de derivadas, las cuales permiten calcular la derivada de muchas funciones de acuerdo a su forma sin tener que calcular forzosamente el límite. Tales reglas son consecuencia directa de la definición de derivada y de reglas previas, como puede apreciarse en todo buen texto de cálculo infinitesimal.

También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguiente manera:

f'(a)=\lim_{x\rightarrow a} \frac{f(x) - f(a)}{x - a},

La cual representa un acercamiento de la pendiente de la secante

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com