ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Variable Aleatoria Discreta


Enviado por   •  3 de Septiembre de 2014  •  2.120 Palabras (9 Páginas)  •  284 Visitas

Página 1 de 9

VARIABLE ALEATORIA DISCRETA

Definición

Se denomina variable aleatoria discreta aquella que sólo puede tomar un número finito de valores dentro de un intervalo. Por ejemplo, el número de componentes de una manada de lobos, puede ser 4 ó 5 ó 6 individuos pero nunca 5,75 ó 5,87. Otros ejemplos de variable discreta serían el número de pollos de gorrión que llegan a volar del nido o el sexo de los componentes de un grupo familiar de babuinos.

Densidad

Se denomina densidad discreta a la probabilidad de que una variable aleatoria discreta X tome un valor numérico determinado (x). Se representa:

f(x) = P[X=x]

La suma de todas las densidades será igual a 1

DISTRIBUCIÓN DE PROBABILIDAD

En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria.

La distribución de probabilidad está completamente especificada por la función de distribución, cuyo valor en cada x real es la probabilidad de que la variable aleatoria sea menor o igual que x.

FUNCIÓN DE DISTRIBUCIÓN

Definición

Dada una variable aleatoria , su función de distribución, , es

Por simplicidad, cuando no hay lugar a confusión, suele omitirse el subíndice y se escribe, simplemente, . Donde en la fórmula anterior:

, es la probabilidad definida sobre un espacio de probabilidad y una medida unitaria sobre el espacio muestral.

Es la medida sobre la σ-álgebra de conjuntos asociada al espacio de probabilidad.

Es el espacio muestral, o conjunto de todos los posibles sucesos aleatorios, sobre el que se define el espacio de probabilidad en cuestión.

Es la variable aleatoria en cuestión, es decir, una función definida sobre el espacio muestral a los números reales.

Propiedades

Como consecuencia casi inmediata de la definición, la función de distribución:

• Es una función continua por la derecha.

• Es una función monótona no decreciente.

Además, cumple

y

Para dos números reales cualesquiera y tal que , los sucesos y son mutuamente excluyentes y su unión es el suceso , por lo que tenemos entonces que:

y finalmente

Por lo tanto una vez conocida la función de distribución para todos los valores de la variable aleatoria conoceremos completamente la distribución de probabilidad de la variable.

Para realizar cálculos es más cómodo conocer la distribución de probabilidad, y sin embargo para ver una representación gráfica de la probabilidad es más práctico el uso de la función de densidad.

Distribuciones de variable discreta

Gráfica de distribución binomial.

Se denomina distribución de variable discreta a aquella cuya función de probabilidad sólo toma valores positivos en un conjunto de valores de finito o infinito. A dicha función se le llama función de masa de probabilidad. En este caso la distribución de probabilidad es la suma de la función de masa, por lo que tenemos entonces que:

Y, tal como corresponde a la definición de distribución de probabilidad, esta expresión representa la suma de todas las probabilidades desde hasta el valor .

Distribuciones de variable discreta más importantes

Las distribuciones de variable discreta más importantes son las siguientes:

Distribución binomial

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

La distribución binomial es la base del test binomial de significación estadística.

Ejemplos:

Las siguientes situaciones son ejemplos de experimentos que pueden modelizarse por esta distribución:

• Se lanza un dado diez veces y se cuenta el número X de tres obtenidos: entonces X ~ B(10, 1/6)

• Se lanza una moneda dos veces y se cuenta el número X de caras obtenidas: entonces X ~ B(2, 1/2)

Distribución binomial negativa

En estadística la distribución binomial negativa es una distribución de probabilidad discreta que incluye a la distribución de Pascal.

El número de experimentos de Bernoulli de parámetro independientes realizados hasta la consecución del k-ésimo éxito es una variable aleatoria que tiene una distribución binomial negativa con parámetros k y .

La distribución geométrica es el caso concreto de la binomial negativa cuando k = 1.

Propiedades:

Su función de probabilidad es

para enteros x mayores o iguales que k, donde

.

Su media es

si se piensa en el número de fracasos únicamente y

si se cuentan también los k-1 éxitos.

Su varianza es

en ambos casos.

Ejemplos:

Si la probabilidad de que un niño expuesto a una enfermedad contagiosa la contraiga es 0,40, ¿Cuál es la probabilidad de que el décimo niño expuesto a la enfermedad sea el tercero en contraerla? En este caso, X es el número de niños expuestos la enfermedad y

La solución es:

En un proceso de manufactura se sabe que un promedio de 1 en cada 10 productos es defectuoso, ¿cuál es la probabilidad que el quinto (5) artículo examinado sea el primero (1) en estar defectuoso?. La solución es: X= artículos defectuosos P= 1/10 = 0,1 q= 1- 0,1 = 0,9 x= 5 ensayos K= 1 b*(5;1,0.1)=(5-1\1-1)(0.1)^1*(0.9)^5-1= b*(5; 1,0.1)= 6.6% de probabilidad que el quinto elemento extraído sea el primero en estar defectuoso.

Distribución de Poisson

En teoría de probabilidad y estadística, la distribución de Poisson es una

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com