Polinomios
Enviado por bushido • 13 de Junio de 2013 • 1.554 Palabras (7 Páginas) • 243 Visitas
Polinomios
Los polinomios son expresines algebraicas de la forma:
P(x) = an xn + an - 1 xn - 1 + an - 2 xn - 2 + ... + a1 x1 + a0
P(x) = 5x4 − 3x3 + 2x2 + 7x + 6
Los coeficientes del polinomio son los números que aparece multiplicando a la variable.
Al témino sin x se le llama término independiente.
Grado de un polinomio
El grado de un polinomio es el mayor exponente al que se encuentra elevada la variable x.
Tipos de polinomios
Monomio
Es un polinomio que consta de un sólo monomio.
P(x) = 2x2
Binomio
Es un polinomio que consta de dos monomios.
P(x) = 2x2 + 3x
Trinomio
Es un polinomio que consta de tres monomios.
P(x) = 2x2 + 3x + 5
Polinomio de grado cero
P(x) = 2
Polinomio de primer grado
P(x) = 3x + 2
Polinomio de segundo grado
P(x) = 2x2 + 3x + 2
Polinomio de tercer grado
P(x) = x3 − 2x2+ 3x + 2
Polinomio de cuarto grado
P(x) = x4 + x3 − 2x2+ 3x + 2
Polinomio nulo
El polinomio nulo tiene todos sus coeficientes nulos.
Polinomio homogéneo
El polinomio homogéneo tiene todos sus términos o monomios con el mismo grado.
P(x) = 2x2 + 3xy
Polinomio heterogéneo
Los términos de un polinomio heterogéneo son de distinto grado.
P(x) = 2x3 + 3x2 − 3
Polinomio completo
Un polinomio completo tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 3x2 + 5x − 3
Polinomio ordenado
Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado.
P(x) = 2x3 + 5x − 3
Polinomios iguales
Dos polinomios son iguales si verifican:
1Los dos polinomios tienen el mismo grado.
2Los coeficientes de los términos del mismo grado son iguales.
P(x) = 2x3 + 5x − 3
Q(x) = 5x − 3 + 2x3
Polinomios semejantes
Dos polinomios son semejantes si verifican que tienen la misma parte literal.
P(x) = 2x3 + 5x − 3
Q(x) = 5x3 − 2x − 7
Valor numérico de un polinomio
El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x) = 2x3 + 5x − 3 ; x = 1
P(1) = 2 • 13 + 5 • 1 − 3 = 2 + 5 − 3 = 4
Operaciones con polinomios
Suma de polinomios
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3− 3x2 + 9x − 3
Resta de polinomios
La resta de polinomios consiste en sumar el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) − Q(x) = 3x2 + x − 3
Multiplicación de polinomios
Multiplicación de un número por un polinomio
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes elproducto de los coeficientes del polinomio por el número.
3 • ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
Multiplicación de un monomio por un polinomio
Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 • (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2
Multiplicación de polinomios
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) • Q(x) = (2x2 − 3) • (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.
División de polinomios
Resolver la división de polinomios:
P(x) = 2x5 + 2x3 −x − 8 Q(x) = 3x2 −2 x + 1
P(x) : Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.
...