ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ALGEBRA ensayos gratis y trabajos

Buscar

Documentos 101 - 150 de 2.112 (mostrando primeros 1.000 resultados)

  • Algebra Y Matrices

    Algebra Y Matrices

    ALGEBRA DE MATRICES Explicaciones generales matriz 3 x 4 El primer número nos indica el número de filas que tiene la matriz. El segundo indica la cantidad de columnas que tiene la matriz. Ejemplo: Si la matriz es A las posiciones de cada número son ai j i es la fila y j es la columna donde se encuentra posicionado el número en la matriz A. Si la matriz es B las posiciones de cada

    Enviado por charliegarzon89 / 593 Palabras / 3 Páginas
  • Algebra Linela Trabajo Colaborativo 1 Unad

    Algebra Linela Trabajo Colaborativo 1 Unad

    Esta actividad es de carácter grupal. 1. Dados los siguientes vectores dados en forma polar: a. u = 2;q = 3150 b. v = 5;q = 600 Realice analíticamente, las operaciones siguientes: 1.1. u v r r + 1.2. v u r r - 1.3 v u r v 3 - 2 2. Encuentre el ángulo entre los siguientes vectores: 2.1. u = iˆ + 7 ˆj r y v = -iˆ - 4 ˆj

    Enviado por stevensurez / 298 Palabras / 2 Páginas
  • ALGEBRA LINEAL

    ALGEBRA LINEAL

    EJERCICIOS EXTRA CLASE 16. Una compañía tiene plantas en tres localidades, X, Y y Z, y cuatro bodegas en los lugares A, B, C y D. El costo en dólares de transportar cada unidad de su producto de una planta a una bodega esta dado por la matriz siguiente: X Y Z A 10 12 15 B 13 10 12 C 8 15 6 D 16 9 10 Si por razones arancelarias el costo de

    Enviado por conivillaloboscr / 1.905 Palabras / 8 Páginas
  • Algebra elemental

    Algebra elemental

    lgebra elemental Artículo principal: Álgebra elemental. Álgebra elemental es la forma más básica del álgebra. A diferencia de la aritmética, en donde sólo se usan los números y sus operaciones aritméticas (como +, −, ×, ÷), en álgebra los números son representados por símbolos (usualmente a, b, c, x, y, z). Esto es útil porque: Permite la formulación general de leyes de aritmética (como a + b = b + a), y esto es el

    Enviado por nazho93 / 870 Palabras / 4 Páginas
  • Act.2 Reconocimiento Del Curso Algebra Lineal

    Act.2 Reconocimiento Del Curso Algebra Lineal

    INTRODUCCION El curso académico se estructura básicamente en dos unidades didácticas. La primera contempla los Vectores, Matrices y Determinantes, la segunda Sistemas de Ecuaciones Lineales, Rectas, Planos e Introducción a los Espacios Vectoriales. A través del curso académico de Algebra Lineal se dinamizan procesos de resignificación cognitiva y fortalecimiento del desarrollo de operaciones meta cognitivas mediante la articulación de los fundamentos teóricos a la identificación de núcleos problémicos en los diferentes campos de formación disciplinar.

    Enviado por BEBEEMI / 302 Palabras / 2 Páginas
  • Trabajo De Algebra

    Trabajo De Algebra

    EJERCICIOS DE APLICACIÓN 1. Se llama DISTRIBUCIONES NUMÉRICAS, a la ___________________ de números en ____________________ tales que guarden relaciones _____________ para obtener un valor llamado ____________________ de la DISTRIBUCIÓN.  Las DISTRIBUCIONES son como las ANALOGÍAS pero los números están dispuestos en figuras. V F  En las distribuciones los gráficos pueden ser de cualquier forman. V F  Se necesita un mínimo de 2 DISTRIBUCIONES para hallar el valor incógnita en la 3ERA DISTRIBICUÓN.

    Enviado por Marking31 / 278 Palabras / 2 Páginas
  • Algebra Y Principios De Matematicas

    Algebra Y Principios De Matematicas

    ¿Cómo serán ahora las gráficas de estos movimientos? De entre las cuatro gráficas siguientes, primero selecciona las que correspondan a Agustín y a Alejandro y después selecciona el inciso que contenga la relación correcta. . a. I) Agustín III) Alejandro b. I) Agustín IV) Alejandro c. II) Agustín III) Alejandro d. II) Agustín IV) Alejandro Efectivamente, el inciso correcto es el d. e. I) Agustín II) Alejandro ¿Cuál de las siguientes relaciones de (función-Nombre) señalan

    Enviado por marypea / 406 Palabras / 2 Páginas
  • ALGEBRA MAXIMO COMUN DENOMINADOR

    ALGEBRA MAXIMO COMUN DENOMINADOR

    Realiza los siguientes ejercicios. Si así lo quieres, despliega la calculadora de Windows. ( 3.0) (3.2) X108-10= 9.6 X10-2 6.6 x 102 = 5.5 x 10-7 1.2 10-9 (6.3)(2.4) x105 6 =15.12 x1011 = 5.04 x1011-7=5.04x104 3.0 x107 3.0 x107 (1.0)(1.0) x102 3 = 1x105 = 1 (1.0)(1.0) x10-5 10=1x105 I. Llena la columna derecha, expresando en notación científica los números expresados, cada vez que requieras hacer conversiones entre unidades de longitud del sistema métrico

    Enviado por correcaminos00 / 451 Palabras / 2 Páginas
  • Algebra Lineal

    Algebra Lineal

    INTRODUCCION Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas. Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las

    Enviado por Tonymora / 2.133 Palabras / 9 Páginas
  • Habilitacion Algebra

    Habilitacion Algebra

    1 Contexto: Este tipo de pregunta se desarrolla en torno a un (1) enunciado y cuatro (4) opciones de respuesta (A, B, C, D). Solo una (1) de estas opciones responde correctamente a la pregunta Enunciado:El conjunto solución de la siguiente desigualdad es: Seleccione una respuesta. a. (6/5,Infinito) b. (5/6,Infinito) c. (-13/6,Infinito) d. (-6/5,Infinito) 2 Contexto: Este tipo de preguntas consta de dos proposiciones, así: una Afirmación y una Razón, Unidas por la palabra PORQUE.

    Enviado por hvidalg / 2.352 Palabras / 10 Páginas
  • Algebra Linelanucleo 3 Segundo Semestre

    Algebra Linelanucleo 3 Segundo Semestre

    1. MATRICES Se denomina matriz a todo conjunto de números reales o expresiones dispuestos en forma rectangular, formando filas y columnas. El concepto de matriz como cuadro o tabla de números es una de las herramientas con mayor número de aplicaciones. Así, encontramos matrices en Sociología (matriz asociada a un gráfico), en Economía (matriz de input-output, matriz de un juego), Demografía (matriz de evolución de la población) y en otros ámbitos. Para representar a una

    Enviado por juanabejarano / 7.620 Palabras / 31 Páginas
  • Algebra Vectorial

    Algebra Vectorial

    Algebra de Vectores Álgebra vectorial es la rama de la matemática que esta relacionada con el manejo de operaciones con magnitudes vectoriales, ya sea suma, resta o multiplicación Un vector físico es una magnitud física caracterizable mediante un punto de aplicación u origen, un módulo, una dirección y un sentido, o alternativamente por un número de componentes independientes tales que las componentes medidas por diferentes observadores son relacionables de manera sistemática. EJEMPLO DE UN VECTOR

    Enviado por edgarsala / 523 Palabras / 3 Páginas
  • Algebra Tarea1 Galileo

    Algebra Tarea1 Galileo

    La práctica consiste en determinar cuanta agua exudan los árboles al medio ambiente por día. Para esto haremos algunas consideraciones . En promedio 60 % del volumen total de un árbol es agua. Un árbol exuda diariamente hacia el medio ambiente en forma de vapor el 5 % del agua que contiene. Con los datos recabados, los alumnos determinaran el volumen del árbol seleccionado y posteriormente podrán encontrar la cantidad de agua que exudan al

    Enviado por tigere / 316 Palabras / 2 Páginas
  • Algebra Anlitica

    Algebra Anlitica

    Puntos: 1 1. La característica principal de un fenómeno de variación constante es que: . a. Al variar una variable, la otra también varía b. La variación de las variables mantiene la misma razón c. Su representación gráfica es una recta horizontal d. Al aumentar el valor de la variable independiente, aumenta el de la variable dependiente e. Al aumentar el valor de la variable independiente, disminuye el de la variable dependiente . . Question

    Enviado por KONERSITO98 / 452 Palabras / 2 Páginas
  • Algebra Lineal

    Algebra Lineal

    Escuela de ciencias básicas, tecnología e ingeniería Programa de ingeniería electrónica 100408 ALGEBRA LINEAL Actividad #6 trabajo colaborativo 1 Tutor María Luz Pérez Estudiante: SOLMERY RIVERA HERRERA CC: 1064110440 FONSECA – LA GUAJIRA 14/abril/2012 INTRODUCCIÓN El Álgebra lineal es la rama de las matemáticas que estudia los vectores, los espacios vectoriales, las transformaciones lineales entre los espacios vectoriales y los sistemas de ecuaciones lineales. Los espacios vectoriales son fundamentales en las matemáticas modernas; el Álgebra

    Enviado por solmery / 778 Palabras / 4 Páginas
  • Formulario De Algebra

    Formulario De Algebra

    Formulario Álgebra y principio de Física Unidad 1 Unidad 2 Unidad 3 Unidad 4 Ley de los exponentes a-n= donde a 1) am.an=am+n 2) = 3) =anm 4) = 5) = Sí a entonces a0=1 Si a, m y n son enteros positivos Entonces: = = Ecuación de una línea recta. (Variación lineal) y=ax+b Velocidad v= Donde: v =velocidad (m/s) d= distancia (m) t= tiempo (s) Al despejar la distancia se tiene d=v(t) Graficas de

    Enviado por lalo450 / 452 Palabras / 2 Páginas
  • Algebra Boleana

    Algebra Boleana

    1.6.1 Reglas de Inferencia INFERENCIA: De premisas verdaderas se obtienen sólo conclusiones verdaderas. Cada regla de inferencia tiene su origen en una implicación lógica. En algunos casos la implicación lógica se establece sin demostración. Regla Nombre p p  q q Modus Ponens p  q q  r p  q Ley del silogismo pq Modus Tollens p q p Λ q Regla de la Conjunción p V q q Regla del silogismo Disyuntivo

    Enviado por eduarx01 / 2.341 Palabras / 10 Páginas
  • Resumen De Algebra

    Resumen De Algebra

    Estas son reglas que les ayudan con las ecuaciones. Si esta del lado izquierdo sumando, pasa al lado derecho restando y viceversa. Ahora si esta multiplicando pasa dividiendo y viceversa. Signos iguales en multiplicación y división son positivos y signos diferentes son negativos. En el caso de la suma y la resta el signo que se toma es el del número mayor. Por ejemplo 6x - 4 = 8x + 6 Tenemos que despejar x

    Enviado por zavuri / 268 Palabras / 2 Páginas
  • Algebra Intermedia II

    Algebra Intermedia II

    TRIGONOMETRIA Es una serie de procedimientos que permiten poner en relación las medidas de los lados de un triángulo con las medidas de sus ángulos. El objetivo de la trigonometría es establecer las relaciones matemáticas entre las medidas de las longitudes de los segmentos que forman los lados de un triángulo con las medidas de las amplitudes de sus ángulos, de manera que resulte posible calcular unas mediante las otras. (http://trigonometria.galeon.com) ÁNGULOS Un ángulo es

    Enviado por JavierYescas / 616 Palabras / 3 Páginas
  • Algebra.

    Algebra.

    Resuelva las siguientes ecuaciones: 2/(X-1)+1=(4-2X)/(X-1) m.c.m: x-1 2/(x-1)+1=(4-2x)/(x-1) Al factorizar nos queda 2+1(x-1)=4-2x Al multiplicar 2+x-1=4-2x Sumamos x+1=4-2x Incógnitas a un lado el reto al otro x+2x=4-1 Sumamos 3x=3 El 3 que multiplica pasa a dividir x=3/3 x=1 3/(4-2X)+30/8(1-X) =3/(2-X)+5/(2-2X) Desarrollamos el factor de 4-2x queda así 3/2(2-x) +30/8(1-x) =3/(2-x)+5/2(1-x) Hallamos el m.c.m = 8(2-x)(1-x) y factorizamos: 12(1-x)+30(2-x)=12(1-x)+20(2-x) Se realiza la multiplicación 12-12x+60-30x=12-12x+40-20x Sumamos cantidades -42x+72=52-32x La incógnita a un lado y el resto al

    Enviado por tankian2 / 835 Palabras / 4 Páginas
  • Álgebra de Boole

    Álgebra de Boole

    Álgebra de Boole Álgebra de Boole (también llamada Retículas booleanas) en informática y matemática, es una estructura algebraica que esquematiza las operaciones lógicas Y, O , NO y Si (AND, OR, NOT, IF), así como el conjunto de operaciones unión, intersección y complemento. Contenido [ocultar] 1 Historia 2 Definición 2.1 Como retículo 3 Operaciones 3.1 Operación suma 3.2 Operación producto 3.3 Operación negación 3.4 Operaciones combinadas 4 Leyes fundamentales 4.1 Principio de dualidad 5 Otras

    Enviado por nico.brs94 / 1.568 Palabras / 7 Páginas
  • Reococimiento Del Curso Algebra Lineal

    Reococimiento Del Curso Algebra Lineal

    TALLER No. 3 DE Algebra y Trigonometría 1. Si SenA=1/4 y A<90°, calcular Cos A = Tan A = Sen 2A = Cos 2A = Tan 2A = 2. Si Sen A = 3/5 y Cos B = 5/13 Calcular a) sen(A+B). b) cos (A-B). c) tag2A. 3. Resuelve los siguientes triángulos rectángulos en los que A=90°. 1) b=5, c=5. 2) c=6, B=60°. 3) a=4, B=45°. 4) b=3, B=45°. 5) a=10, b=8. 4. Resuelva los

    Enviado por damayao / 2.534 Palabras / 11 Páginas
  • ALgebra Lineal

    ALgebra Lineal

    Introducción Las personas creen saber lo que usan, creen saber lo que manejan, algunas personas de verdad lo saben y otras veces no muestran el interés para informarse sobre cómo es que funciona. En nuestra vida cotidiana usamos tanto las matemáticas, que sin ellas no podríamos vivir, el simple hecho de comprar un dulce de $1 peso y pagar con una moneda de $5 al momento de devolver $4 pesos usaste las matemáticas para determinar

    Enviado por LorenaRozas / 271 Palabras / 2 Páginas
  • La realización de tareas de álgebra

    La realización de tareas de álgebra

    Unidad 3 _Objetos acelerándose (2) 1. ¿En cuántos m/s disminuye la velocidad del balón por cada segundo que transcurre?.Tu respuesta debe ser numérica y no olvides las unidades. Respuesta: 3m/s ya que si observas en la tabla te puedes dar cuenta que en el transcurso de 0s a 1s la velocidad del balón disminuyó en 3 m/s, lo mismo pasa de 1s a 2s y de 2s a 3s. 2. Basándote en la definición de

    Enviado por gabrielamacias / 1.958 Palabras / 8 Páginas
  • Algebra, Trigonometria Y Geometria Analitica

    Algebra, Trigonometria Y Geometria Analitica

    1. Si x < 0, y > 0. Determina el signo del número real a. X/Y R/ -3/3: -1 negativo b. XY² R/ - 3. 3²: -27 negativo c. Y – X R/ 3 – (-3): 6 positivo d. Y (Y - X) R/ 3. (3 – (-3)): 18 positivo 2. Expresa el enunciado como desigualdad: a. X es negativo –> respuesta elegida b. X esta entre 4 y 2 c. El negativo de x

    Enviado por jescobar / 403 Palabras / 2 Páginas
  • Algebra Y Geometria

    Algebra Y Geometria

    Elegida por la comunidad I. ¿Cuándo nace el Algebra? La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan. Los matemáticos alejandrinos Herón y Diofante continuaron con la

    Enviado por amauris / 1.243 Palabras / 5 Páginas
  • Álgebra Booleana

    Álgebra Booleana

    Índice • Introducción • Algebra Booleana • Circuitos • Tabla de verdad • Teoría de Conjuntos • Falacias • Conclusión • Comentario Personal • Bibliografía Álgebra Booleana El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta

    Enviado por PeterSin_Pan / 998 Palabras / 4 Páginas
  • Algebra De Bardol

    Algebra De Bardol

    Partes: 1, 2 Cuando Pepe no estaba con su esposa los estaba protegiendo, y estos ponían a su madre muy tiernas y cariñosa. En la noche fueron nuevamente a casa de Dimas este confesó que estos aguaceros no tenían fin, y hubo un silencio total. Pocos días fueron a visitar a doña Carmita, esta vivía en el centro de Jigüey, la vieja lo saludó en voz baja pero no quiso seguir hablando. Un rato después,

    Enviado por saulgustavo / 1.701 Palabras / 7 Páginas
  • Algebra.

    Algebra.

    El álgebra Para trabajar en álgebra son necesarios ciertos conocimientos previos sobre operatoria en Números Enteros y Números Racionales. También deben conocerse las propiedades de las potencias. Los ejercicios deben desarrollarse de acuerdo a las operatorias que se realicen. Se pueden restar o sumar términos semejantes, multiplicar expresiones algebraicas o bien simplificarlas. Símbolos y términos específicos Entre los símbolos algebraicos se encuentran números, letras y signos que representan las diversas operaciones aritméticas. Los números son,

    Enviado por yazminisabel / 265 Palabras / 2 Páginas
  • Algebra Booleana

    Algebra Booleana

    ALGEBRA BOOLENA Objetivo: Dibujar diagramas lógicos a partir de expresiones booleanas. Dibujar un diagrama lógico a partir de una tabla de verdad desarrollando primeramente la expresión booleana correspondiente. Reducir una expresión booleana. Convertir la expresión booleana en su tabla de verdad. Simplificar lo circuitos lógicos. Contenido: Desarrollo de circuitos lógicos sencillos a partir de la tabla de verdad de los requerimientos del circuito. Circuitos prácticos simplificados a partir de la tabla de verdad. En el

    Enviado por JADM / 3.490 Palabras / 14 Páginas
  • Temario Itl Algebra Lineal

    Temario Itl Algebra Lineal

    5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencia específica a desarrollar en el curso) Resolver problemas de aplicación e interpretar las soluciones utilizando matrices y sistemas de ecuaciones lineales para las diferentes áreas de la ingeniería. Identificar las propiedades de los espacios vectoriales y las transformaciones lineales para describirlos, resolver problemas y vincularlos con otras ramas de las matemáticas. 6.- COMPETENCIAS PREVIAS Manejar el concepto de los números reales y su representación gráfica. Usar las operaciones con

    Enviado por pacomemo777 / 576 Palabras / 3 Páginas
  • Informacion Algebra Lineal

    Informacion Algebra Lineal

    Informe de laboratorio Juan David Nieto Bedoya Luis Alexander Rodríguez Ruíz Billy esteban Pinchao Mueses Materiales • Cable • Bombillo AC • Switch • Limón • Papa • Placas de aluminio • Placas de cobre • multímetro Introducción En este informe observaremos parte teórica de experimento realizado en clase el cual trata de la la reacción de dos cuerpos con la presencia de dos metales diferentes, que trabajan como una especie de electrodos causando una

    Enviado por Gumbersito / 241 Palabras / 1 Páginas
  • EL ALGEBRA

    EL ALGEBRA

    EL ALGEBRA El Algebra es la rama de las matemáticas que estudia la cantidad considerada del modo más general posible. LA HISTORIA DEL ALGEBRA La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los anticuados babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los

    Enviado por duffyone / 4.073 Palabras / 17 Páginas
  • Algebra Lineal

    Algebra Lineal

    El álgebra lineal es una de las ramas de las matemáticas que estudia conceptos tales como vectores, matrices, sistemas de ecuaciones lineales y en un enfoque más formal, espacios vectoriales, y sustransformaciones lineales. Es un área activa que tiene con muchas áreas dentro y fuera de las matemáticas como análisis funcional, ecuaciones diferenciales, investigación de operaciones, gráficas por computadora, ingeniería, etc. La historia del álgebra lineal moderna se remonta a los años de 1843 cuando

    Enviado por fenixgab / 595 Palabras / 3 Páginas
  • Historia Del Algebra Lineal

    Historia Del Algebra Lineal

    INTRODUCCION En el presente trabajo menciono la importancia de matrices y determinantes, que nos ayudan a resolver diferentes situaciones o representación y manipulación de datos. Las matrices aparecen por primera vez hacia el año de 1850, el primero que empleo el término “matriz” fue el matemático ingles james Joseph sylvester en el año 1850. Cuando aun en el resto del mundo de esa época se desconocía ese término, sin embargo hace más de dos mil

    Enviado por mirthaandrade / 318 Palabras / 2 Páginas
  • Algebra Lineal

    Algebra Lineal

    ÀLGEBRA LINEAL Definición: El álgebra lineal es una de las ramas de las matemáticas que estudia conceptos tales como vectores, matrices, sistemas de ecuaciones lineales y en un enfoque más formal, espacios vectoriales, y sus transformaciones lineales. Es un área activa que tiene conexiones con muchas áreas dentro y fuera de las matemáticas como análisis funcional, ecuaciones diferenciales, investigación de operaciones, gráficas por computadora, ingeniería, etc. Origen: Los primeros rudimentos de lo que hoy conocemos

    Enviado por kenc14 / 357 Palabras / 2 Páginas
  • Algebra.

    Algebra.

    ALGEBRA: El Álgebra es el área de las matemáticas donde las letras (como x o y) u otros símbolos son usados para representar números desconocidos. El Álgebra es una rama de las matemáticas que estudia los números y sus propiedades en forma general. No necesita el valor de un número para poder saber sus propiedades y operarlo, para ello lo sustituye por un símbolo que generalmente es una letra. Al empezar con el estudio del

    Enviado por JESUS7021 / 253 Palabras / 2 Páginas
  • Trabajo Colaborativo Algebra Lineal

    Trabajo Colaborativo Algebra Lineal

    ALGEBRA LINEAL Trabajo Colaborativo No. 2 Sistemas lineales, rectas, planos y espacios vectoriales. INTRODUCCION En el desarrollo de este trabajo apreciaremos ejercicios planteados por nuestro tuto y director de grupo, basados en los temas de la unidad 2 la cual hace referencia y explicación de temas como: conceptos de sistemas lineales, rectas, planos y espacios vectoriales. Para resolver los ejercicios utilizamos métodos como: la eliminación de Gauss – Jordán, la inversa y otros temas tales

    Enviado por XIONARYS / 1.219 Palabras / 5 Páginas
  • Evidencia de aprendizaje: Álgebra de límites y continuidad

    Evidencia de aprendizaje: Álgebra de límites y continuidad

    Evidencia de aprendizaje: Álgebra de límites y continuidad Ejercicio 1 Cálculo de límites Analiza cada una de las funciones que aparecen en la columna izquierda y compáralas con las respuestas de la columna derecha. Realiza los cálculos necesarios que te permitirán relacionar las columnas. ( 3 ) ( 1 ) ( 4 ) ( 5 ) ( 2 ) Lim ƒ(х) = 4(2) + 2 = 8 + 2 = 10 x→2 Lim ƒ (

    Enviado por cataleya1986 / 1.189 Palabras / 5 Páginas
  • Los símbolos y términos específicos en el álgebra

    Los símbolos y términos específicos en el álgebra

    ÁLGEBRA . El algebra es una rama de las matematicas que se ocupa de estudiar las propiedades generales de las operaciones aritmeticas y lo números para generar procedimientos que puedan globalizarse para todos los casos analogos. esta rama se caracteriza por hacer implicitas las incognitas dentro de la misma operación; ecuación algebraica. Símbolos y términos específicos Entre los símbolos algebraicos se encuentran números, letras y signos que representan las diversas operaciones aritméticas. Los números son,

    Enviado por florcita2308 / 513 Palabras / 3 Páginas
  • La historia del álgebra

    La historia del álgebra

    La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan. Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las

    Enviado por Gaby093 / 591 Palabras / 3 Páginas
  • Algebra trigonometria y geometria analitica

    Algebra trigonometria y geometria analitica

    UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA APORTE INDIVIDUAL A TRABAJO COLABORATIVO 2 GRUPO-141 VIVIANA ISABEL CAMARGO CAMARGO 46455830 Presentado a: TUTORA DORIXY DE ARMAS DUARTE ALGEBRA TRIGONOMETRIA Y GEOMETRIA ANALITICA ABRIL DE 2012 1. De la siguiente relación R = { (x, y) / 3x2 – 4y2 = 12 } . Determine: a) Dominio b) Rango Para esa función: A. El Dominio es -∞ < x ≤ -2

    Enviado por carlosavellaneda / 2.035 Palabras / 9 Páginas
  • Conceptos De álgebra, Trigonometría Y Geometría Anlítica

    Conceptos De álgebra, Trigonometría Y Geometría Anlítica

    Conceptos de Álgebra, Trigonometría y Geometría Analítica Para desarrollar esta actividad evaluativa, revisaremos y recordaremos tres (3) conceptos básicos: • Álgebra. • Trigonometría. • Geometría Analítica. 1. Conceptos fundamentales de Álgebra: La palabra álgebra proviene de ilm al-jabr w' al muqabala, que es el título de un libro escrito en el siglo IX por el matemático árabe Al Juarismi. El titulo se ha traducido como la ciencia de la reposición y la reducción, lo que

    Enviado por Ader9286 / 1.346 Palabras / 6 Páginas
  • Examen De Algebra Conjuntos

    Examen De Algebra Conjuntos

    NOMBRE: __________________________________________ FECHA: ______________________ ESCUELA: _________________________________ GRUPO:_______ TURNO:__________________ Bienvenido a esta casa de estudios, una gran felicitación pues ya formas parte de nuestra comunidad estudiantil donde la calidad la hace tú. Esta evaluación tiene la finalidad de identificar tu nivel de conocimientos, por lo que te pedimos tu mejor esfuerzo, bienvenido y MUCHA SUERTE. 1. - Exprese en forma tabular: • El conjunto de las escuelas de todos los niveles en tu región, en Edo.

    Enviado por PATRICKELPOBLANO / 375 Palabras / 2 Páginas
  • ALGEBRA LINEAL ACT 3

    ALGEBRA LINEAL ACT 3

    1 De acuerdo a la lectura sobre “suma de vectores”, y a partir de la definición de suma y diferencia de vectores, en cual de los siguientes casos es posible realizar la suma u + v Seleccione una respuesta. a. u = (-2,5,3,7) y v = (4,10,5) b. u = (-2,5,1) y v = (4,10,5) c. u = (-2,5) y v = (4,10,5) d. u = (-2,5) y v = (4,10,5,9) 2 Seleccione una respuesta.

    Enviado por jose82 / 295 Palabras / 2 Páginas
  • Algebra En La Vida Cotidiana

    Algebra En La Vida Cotidiana

    Aplicaciones del Algebra Lineal en la vida cotidiana El Álgebra Lineal es la rama de las matemáticas que concierne al estudio de vectores, espacios vectoriales, transformaciones lineales, y sistemas de ecuaciones lineales. Los espacios vectoriales son un tema central en las matemáticas modernas; por lo que el álgebra lineal es usada ampliamente en álgebra abstracta y análisis funcional. El álgebra lineal tiene una representación concreta en la geometría analítica, y tiene aplicaciones en el campo

    Enviado por saul17R / 866 Palabras / 4 Páginas
  • Algebra.

    Algebra.

    Son pocas las películas ofertadas en el mercado que plantean el tema de la docencia y aunque la que se ha propuesto para este análisis tiene tintes cómicos, me permitiré analizarla desde un enfoque educativo puesto que diversas escenas llamaron poderosamente mi atención por lo siguiente: Elizabeth (Cameron Díaz) es una profesora despiadada, grosera, malhablada y absolutamente irresponsable: bebe, se coloca y sólo piensa en encontrar un buen marido para poder dejar de trabajar. Cuando

    Enviado por alondrabebe / 383 Palabras / 2 Páginas
  • Historia del álgebra

    Historia del álgebra

    ¿Que es el algebra? El algebra es una rama de las matematicas que se ocupa de estudiar las propiedades generales de las operaciones aritmeticas y lo números para generar procedimientos que puedan globalizarse para todos los casos analogos. esta rama se caracteriza por hacer implicitas las incognitas dentro de la misma operación; ecuación algebraica. Etimologicamente, proviene del árabe (también nombrado por los árabes Amucabala )??? (yebr) ( al-dejaber ), con el significado de reducción, operación

    Enviado por isabel150386 / 320 Palabras / 2 Páginas
  • Trabajo Col 2 Algebra Trigonometri Geometria Analitca

    Trabajo Col 2 Algebra Trigonometri Geometria Analitca

    Encuentre el dominio, codominio, rango y grafo de cada una de las siguientes funciones: f(x)=x^2 Como es una función cuadrática x podrá ser cualquier número real menos cero (0), por tanto, Dominio Є R El codominio estará formado por los racionales positivos ya que cualquier número elevado al cuadrado sea positivo o negativo dará como resultado un número positivo, por tanto, Codominio Є R+ El rango está conformado por los elementos del codominio que son

    Enviado por lizetha1234 / 1.301 Palabras / 6 Páginas
  • Algebra Lineal

    Algebra Lineal

    Teoría básica de conjuntos Artículo principal: Conjunto. La teoría de conjuntos más elemental es una de las herramientas básicas del lenguaje matemático. Dados unos elementos, unos objetos matemáticos —como números o polígonos por ejemplo—, puede imaginarse una colección determinada de estos objetos, un conjunto. Cada uno de estos elementos pertenece al conjunto, y esta noción de pertenencia es la relación relativa a conjuntos más básica. Los propios conjuntos pueden imaginarse a su vez como elementos

    Enviado por alvaradopacnhi / 567 Palabras / 3 Páginas